Multiple interacting liquids

The particle level set method has proven successful for the simulation of two separate regions (such as water and air, or fuel and products). In this paper, we propose a novel approach to extend this method to the simulation of as many regions as desired. The various regions can be liquids (or gases) of any type with differing viscosities, densities, viscoelastic properties, etc. We also propose techniques for simulating interactions between materials, whether it be simple surface tension forces or more complex chemical reactions with one material converting to another or two materials combining to form a third. We use a separate particle level set method for each region, and propose a novel projection algorithm that decodes the resulting vector of level set values providing a "dictionary" that translates between them and the standard single-valued level set representation. An additional difficulty occurs since discretization stencils (for interpolation, tracing semi-Lagrangian rays, etc.) cross region boundaries naively combining non-smooth or even discontinuous data. This has recently been addressed via ghost values, e.g. for fire or bubbles. We instead propose a new paradigm that allows one to incorporate physical jump conditions in data "on the fly," which is significantly more efficient for multiple regions especially at triple points or near boundaries with solids.

[1]  Dimitris N. Metaxas,et al.  Modeling the motion of a hot, turbulent gas , 1997, SIGGRAPH.

[2]  James F. O'Brien,et al.  Animating gases with hybrid meshes , 2005, SIGGRAPH 2005.

[3]  Michael Neff,et al.  A Visual Model For Blast Waves and Francture , 1999, Graphics Interface.

[4]  E. Guendelman,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH 2005.

[5]  G. Turk,et al.  Water drops on surfaces , 2005, SIGGRAPH 2005.

[6]  Jessica K. Hodgins,et al.  Animating explosions , 2000, SIGGRAPH.

[7]  Insung Ihm,et al.  Animation of reactive gaseous fluids through chemical kinetics , 2004, SCA '04.

[8]  Dimitris N. Metaxas,et al.  Controlling fluid animation , 1997, Proceedings Computer Graphics International.

[9]  Jim X. Chen,et al.  Toward Interactive-Rate Simulation of Fluids with Moving Obstacles Using Navier-Stokes Equations , 1995, CVGIP Graph. Model. Image Process..

[10]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[11]  Adrien Treuille,et al.  Keyframe control of smoke simulations , 2003, ACM Trans. Graph..

[12]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[13]  Chang-Hun Kim,et al.  Animation of Bubbles in Liquid , 2003, Comput. Graph. Forum.

[14]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[15]  Ronald Fedkiw,et al.  Melting and burning solids into liquids and gases , 2006, IEEE Transactions on Visualization and Computer Graphics.

[16]  Dimitris N. Metaxas,et al.  Animation and control of breaking waves , 2004, SCA '04.

[17]  Yizhou Yu,et al.  Taming liquids for rapidly changing targets , 2005, SCA '05.

[18]  Arnauld Lamorlette,et al.  Structural modeling of flames for a production environment , 2002, SIGGRAPH.

[19]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[20]  Dani Lischinski,et al.  Target-driven smoke animation , 2004, SIGGRAPH 2004.

[21]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[22]  Duc Quang Nguyen,et al.  Directable photorealistic liquids , 2004, SCA '04.

[23]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[24]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[25]  Eugene Fiume,et al.  Depicting fire and other gaseous phenomena using diffusion processes , 1995, SIGGRAPH.

[26]  Z. Popovic,et al.  Fluid control using the adjoint method , 2004, SIGGRAPH 2004.

[27]  Duc Quang Nguyen,et al.  Physically based modeling and animation of fire , 2002, ACM Trans. Graph..

[28]  Ross T. Whitaker,et al.  Particle‐Based Simulation of Fluids , 2003, Comput. Graph. Forum.

[29]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[30]  Jeong-Mo Hong,et al.  Discontinuous fluids , 2005, SIGGRAPH 2005.

[31]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[32]  Markus H. Gross,et al.  Eurographics Symposium on Point-based Graphics (2005) a Unified Lagrangian Approach to Solid-fluid Animation , 2022 .

[33]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[34]  Steven J. Ruuth A Diffusion-Generated Approach to Multiphase Motion , 1998 .

[35]  Ken Museth,et al.  Hierarchical RLE level set: A compact and versatile deformable surface representation , 2006, TOGS.

[36]  Jos Stam,et al.  Flows on surfaces of arbitrary topology , 2003, ACM Trans. Graph..

[37]  Andrew Selle,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[38]  James F. O'Brien,et al.  Animating suspended particle explosions , 2003, ACM Trans. Graph..

[39]  Mark Carlson,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, SIGGRAPH 2004.

[40]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[41]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[42]  John Keyser,et al.  Multi-representation interaction for physically based modeling , 2005, SPM '05.

[43]  S. Osher,et al.  Motion of multiple junctions: a level set approach , 1994 .

[44]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[45]  Duc Quang Nguyen,et al.  Smoke simulation for large scale phenomena , 2003, ACM Trans. Graph..

[46]  Frank Losasso,et al.  Simulating water and smoke with an octree data structure , 2004, SIGGRAPH 2004.

[47]  D. Chopp,et al.  A projection method for motion of triple junctions by level sets , 2002 .

[48]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[49]  R. Fedkiw,et al.  USING THE PARTICLE LEVEL SET METHOD AND A SECOND ORDER ACCURATE PRESSURE BOUNDARY CONDITION FOR FREE SURFACE FLOWS , 2003 .