From global to regional analysis of the magnetic field on the sphere using wavelet frames

Abstract Wavelet analysis has proven to be a powerful tool for numerical studies and signal processing. The wavelets power lies in the fact that in general they only require a small number of coefficients to represent functions and large datasets accurately up to a given precision. In this paper, we present a wavelet construction for scalar functions defined on the sphere. In particular, we show how spherical harmonics can be efficiently represented with spherical wavelets. The final goal of this approach is to model the magnetic field of the Earth simultaneously on global and regional scales.

[1]  Mioara Mandea,et al.  An IGRF candidate main geomagnetic field model for epoch 2000 and a secular variation model for 2000–2005 , 2000 .

[2]  Catherine Constable,et al.  Foundations of geomagnetism , 1996 .

[3]  K. Whaler GEOMAGNETIC EVIDENCE FOR FLUID UPWELLING AT THE CORE-MANTLE BOUNDARY , 1986 .

[4]  W. Freeden,et al.  Spherical wavelet transform and its discretization , 1996 .

[5]  G. V. Haines Spherical cap harmonic analysis , 1985 .

[6]  Carl Friedrich Gauss,et al.  Allgemeine Theorie des Erdmagnetismus , 1877 .

[7]  B. Langlais,et al.  Observatory crustal magnetic biases during MAGSAT and Ørsted satellite missions , 2002 .

[8]  Willi Freeden,et al.  A vector wavelet approach to iono- and magnetospheric geomagnetic satellite data , 2001 .

[9]  Robert L. Parker,et al.  Efficient modeling of the Earth's magnetic field with harmonic splines , 1982 .

[10]  Evaluation of the candidate Main Field model for IGRF 2000 derived from preliminary Ørsted data , 2000 .

[11]  S. Macmillan,et al.  International Geomagnetic Reference Field—the eighth generation , 2000 .

[12]  R. Langel,et al.  The use of low altitude satellite data bases for modeling of core and crustal fields and the separation of external and internal fields , 1993 .

[13]  Matthias Holschneider,et al.  Continuous wavelet transforms on the sphere , 1996 .

[14]  D. Alsdorf,et al.  Separation of lithospheric, external, and core components of the south polar geomagnetic field at satellite altitudes , 1994 .

[15]  Willi Freeden,et al.  Geophysical Field Modelling by Multiresolution Analysis , 2013 .

[16]  George E. Backus,et al.  Harmonic splines for geomagnetic modelling , 1982 .

[17]  Matthias Holschneider,et al.  Wavelets - an analysis tool , 1995, Oxford mathematical monographs.

[18]  R. Merrill The magnetic field of the earth , 1996 .

[19]  J. Cain,et al.  Numerical experiments in geomagnetic modeling , 1990 .

[20]  Gabriele Steidl,et al.  Coorbit Spaces and Banach Frames on Homogeneous Spaces with Applications to Analyzing Functions on Spheres , 2004 .

[21]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[22]  Roland Klees,et al.  Wavelets in the Geosciences , 2000 .

[23]  Willi Freeden,et al.  Constructive Approximation on the Sphere: With Applications to Geomathematics , 1998 .