Extremal Problems for Roman Domination

A Roman dominating function of a graph $G$ is a labeling $f\colon\,V(G)\to\{0,1,2\}$ such that every vertex with label 0 has a neighbor with label 2. The Roman domination number $\gamma_R(G)$ of $G$ is the minimum of $\sum_{v\in V(G)}f(v)$ over such functions. Let $G$ be a connected $n$-vertex graph. We prove that $\gamma_R(G)\leq4n/5$, and we characterize the graphs achieving equality. We obtain sharp upper and lower bounds for $\gamma_R(G)+\gamma_R(\overline{G})$ and $\gamma_R(G)\gamma_R(\overline{G})$, improving known results for domination number. We prove that $\gamma_R(G)\leq8n/11$ when $\delta(G)\geq2$ and $n\geq9$, and this is sharp.

[1]  Michael A. Henning Defending the Roman Empire from multiple attacks , 2003, Discret. Math..

[2]  E. A. Nordhaus,et al.  On Complementary Graphs , 1956 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Xin Chen,et al.  A note on Roman domination in graphs , 2006, Discret. Math..

[5]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[6]  I. Stewart Defend the Roman Empire , 1999 .

[7]  Dieter Kratsch,et al.  Graph-Theoretic Concepts in Computer Science , 1987, Lecture Notes in Computer Science.

[8]  C. P. Rangan,et al.  A Unified Approach to Domination Problems on Interval Graphs , 1988, Inf. Process. Lett..

[9]  Michael A. Henning A characterization of Roman trees , 2002, Discuss. Math. Graph Theory.

[10]  JH van Vuuren,et al.  Finite Order Domination in Graphs , 2003 .

[11]  Mathieu Liedloff,et al.  Roman Domination over Some Graph Classes , 2005, WG.

[12]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[13]  Michael A. Henning,et al.  Defending the Roman Empire--A new strategy , 2003, Discret. Math..

[14]  Song,et al.  Roman Domination Number and Domination Number of a Tree , 2006 .

[15]  G. Dirac,et al.  Minimally 2-connected graphs. , 1967 .

[16]  Stephen T. Hedetniemi,et al.  Roman domination in graphs , 2004, Discret. Math..

[17]  F. Bruce Shepherd,et al.  Domination in graphs with minimum degree two , 1989, J. Graph Theory.