The Fractional Fourier Transform and Harmonic Oscillation

The ath-order fractional Fourier transform is a generalization ofthe ordinary Fourier transform such that the zeroth-order fractionalFourier transform operation is equal to the identity operation and thefirst-order fractional Fourier transform is equal to the ordinaryFourier transform. This paper discusses the relationship of thefractional Fourier transform to harmonic oscillation; both correspondto rotation in phase space. Various important properties of thetransform are discussed along with examples of commontransforms. Some of the applications of the transform are brieflyreviewed.

[1]  F. Hlawatsch,et al.  Linear and quadratic time-frequency signal representations , 1992, IEEE Signal Processing Magazine.

[2]  H M Ozaktas,et al.  Perspective projections in the space-frequency plane and fractional Fourier transforms. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  H M Ozaktas,et al.  Space bandwidth-efficient realizations of linear systems. , 1998, Optics letters.

[4]  M. F. Erden,et al.  Relationships among ray optical, Gaussian beam, and fractional Fourier transform descriptions of first-order optical systems , 1997 .

[5]  Z. Zalevsky,et al.  The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .

[6]  Nicola Laurenti,et al.  A unified framework for the fractional Fourier transform , 1998, IEEE Trans. Signal Process..

[7]  F. H. Kerr Namias' fractional Fourier transforms on L2 and applications to differential equations , 1988 .

[8]  E. M. Lifshitz,et al.  Mechanics. Second edition. , 1969 .

[9]  Gozde Bozdagi Akar,et al.  Digital computation of the fractional Fourier transform , 1996, IEEE Trans. Signal Process..

[10]  K. Yosida Operational Calculus: A Theory of Hyperfunctions , 1984 .

[11]  J. W. Humberston Classical mechanics , 1980, Nature.

[12]  Levent Onural,et al.  Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms , 1994 .

[13]  Levent Onural,et al.  Optimal filtering in fractional Fourier domains , 1997, IEEE Trans. Signal Process..

[14]  H. Ozaktas,et al.  Fourier transforms of fractional order and their optical interpretation , 1993 .

[15]  Orhan Arikan,et al.  The fractional Fourier domain decomposition , 1999, Signal Process..

[16]  Billur Barshan,et al.  Optimal filtering with linear canonical transformations , 1997 .

[17]  A. Lohmann,et al.  IV: Fractional Transformations in Optics , 1998 .

[18]  O. Soares,et al.  Fractional Fourier transforms and imaging , 1994 .

[19]  Imam Samil Yetik,et al.  Continuous and discrete fractional Fourier domain decomposition , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[20]  T. Chow,et al.  Classical Mechanics, Second Edition , 1995 .

[21]  H M Ozaktas,et al.  Nonseparable two-dimensional fractional fourier transform. , 1998, Applied optics.

[22]  Cagatay Candan,et al.  The discrete fractional Fourier transform , 2000, IEEE Trans. Signal Process..

[23]  G. Boudreaux-Bartels,et al.  Broadband interference excision in spread spectrum communication systems via fractional Fourier transform , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).

[24]  M. Bastiaans,et al.  From the rectangular to the quincunx Gabor lattice via fractional Fourier transformation , 1998, IEEE Signal Processing Letters.

[25]  Orhan Arikan,et al.  Solution and cost analysis of general multi-channel and multi-stage filtering circuits , 1998, Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380).

[26]  D Mendlovic,et al.  Optical implementations of two-dimensional fractional fourier transforms and linear canonical transforms with arbitrary parameters. , 1998, Applied optics.

[27]  F. H. Kerr,et al.  On Namias's fractional Fourier transforms , 1987 .

[28]  M. A. Kutay,et al.  Introduction to the Fractional Fourier Transform and Its Applications , 1999 .

[29]  V. Namias The Fractional Order Fourier Transform and its Application to Quantum Mechanics , 1980 .

[30]  G. S. Agarwal,et al.  A simple realization of fractional Fourier transform and relation to harmonic oscillator Green's function , 1994 .

[31]  A. Lohmann Image rotation, Wigner rotation, and the fractional Fourier transform , 1993 .

[32]  H. Ozaktas,et al.  Fractional Fourier optics , 1995 .

[33]  Luís B. Almeida,et al.  The fractional Fourier transform and time-frequency representations , 1994, IEEE Trans. Signal Process..

[34]  M. A. Kutay,et al.  The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform , 2000 .