Diffusion PDEs on vector-valued images

In this article, we propose a local and geometric point of view of vector image filtering using diffusion PDEs. It allows us to analyze proposed methods of vector data regularization, as well as propose a new vector PDE, well adapted for image restoration. This equation, whose key feature is the use of a local vector geometry, combines the advantages of diffusion PDEs for noise removing but also uses vector shock filters to enhance blurred edges. The extension to norm constrained vector fields can be the start for other well-known constrained problems, as optical flow computation, orientation analysis, and tensor image restoration.

[1]  Ron Kimmel,et al.  From High Energy Physics to Low Level Vision , 1997, Scale-Space.

[2]  J. Morel,et al.  Segmentation of images by variational methods: a constructive approach. , 1988 .

[3]  Atsushi Imiya,et al.  Linear Scale-Space has First been Proposed in Japan , 1999, Journal of Mathematical Imaging and Vision.

[4]  A. Koschan A Comparative Study On Color Edge Detection , 1995 .

[5]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[6]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[7]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[8]  A. Ben Hamza,et al.  Unifying probabilistic and variational estimation , 2002, IEEE Signal Process. Mag..

[9]  Rachid Deriche,et al.  Nonlinear operators in image restoration , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  J. K. Liang,et al.  A design algorithm for optimal low-pass nonlinear phase FIR digital filters , 1985 .

[11]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .

[12]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[13]  Guillermo Sapiro,et al.  Contrast Enhancement via Image Evolution Flow , 1997, CVGIP Graph. Model. Image Process..

[14]  Joachim Weickert,et al.  A Review of Nonlinear Diffusion Filtering , 1997, Scale-Space.

[15]  Stanley Osher,et al.  Total variation based image restoration with free local constraints , 1994, Proceedings of 1st International Conference on Image Processing.

[16]  James A. Sethian,et al.  Image Processing: Flows under Min/Max Curvature and Mean Curvature , 1996, CVGIP Graph. Model. Image Process..

[17]  Jean-Michel Morel,et al.  Introduction To The Special Issue On Partial Differential Equations And Geometry-driven Diffusion In Image Processing And Analysis , 1998, IEEE Trans. Image Process..

[18]  Guillermo Sapiro,et al.  Vector probability diffusion , 2001, IEEE Signal Processing Letters.

[19]  B. Vemuri,et al.  Fiber tract mapping from diffusion tensor MRI , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[20]  Ilya Pollak Nonlinear multiscale filtering , 2002 .

[21]  Luc Van Gool,et al.  Coupled Geometry-Driven Diffusion Equations for Low-Level Vision , 1994, Geometry-Driven Diffusion in Computer Vision.

[22]  Guillermo Sapiro,et al.  Direction diffusion , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[23]  R. Deriche,et al.  EDP, débruitage et réhaussement en traitement d'image : Analyse et contributions , 1997 .

[24]  Ron Kimmel A natural geometric norm for multi-channel image processing , 1998 .

[25]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[26]  J. Morel,et al.  An axiomatic approach to image interpolation. , 1998, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[27]  Simon R. Arridge,et al.  A Regularization Scheme for Diffusion Tensor Magnetic Resonance Images , 2001, IPMI.

[28]  Rachid Deriche,et al.  Image coupling, restoration and enhancement via PDE's , 1997, Proceedings of International Conference on Image Processing.

[29]  R. Deriche,et al.  Les EDP en traitement des images et vision par ordinateur , 1995 .

[30]  Anthony J. Yezzi,et al.  Modified curvature motion for image smoothing and enhancement , 1998, IEEE Trans. Image Process..

[31]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[32]  Wenyuan Xu,et al.  Analysis and design of anisotropic diffusion for image processing , 1994, Proceedings of 1st International Conference on Image Processing.

[33]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[34]  Quang-Tuan Luong 1 - La couleur en vision par ordinateur : une revue , 1991 .

[35]  R. Deriche,et al.  Regularization of orthonormal vector sets using coupled PDE's , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[36]  Laurent D. Cohen,et al.  Auxiliary variables and two-step iterative algorithms in computer vision problems , 2004, Journal of Mathematical Imaging and Vision.

[37]  Rachid Deriche,et al.  Diffusion tensor regularization with constraints preservation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[38]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Michel Barlaud,et al.  Two deterministic half-quadratic regularization algorithms for computed imaging , 1994, Proceedings of 1st International Conference on Image Processing.

[40]  Ron Kimmel,et al.  Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..

[41]  Rachid Deriche,et al.  Dense Disparity Map Estimation Respecting Image Discontinuities: A PDE and Scale-Space BasedApproach , 2002, MVA.

[42]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[43]  Pietro Perona Orientation diffusions , 1998, IEEE Trans. Image Process..

[44]  Guillermo Sapiro,et al.  Color Snakes , 1997, Comput. Vis. Image Underst..

[45]  Jayant Shah,et al.  A common framework for curve evolution, segmentation and anisotropic diffusion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[46]  G. Cottet,et al.  Image processing through reaction combined with nonlinear diffusion , 1993 .

[47]  Guillermo Sapiro,et al.  Vector-valued active contours , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[48]  Joachim Weickert,et al.  Coherence-enhancing diffusion of colour images , 1999, Image Vis. Comput..

[49]  Isabelle Bloch,et al.  Regularization of MR Diffusion Tensor Maps for Tracking Brain White Matter Bundles , 1998, MICCAI.

[50]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[51]  Guillermo Sapiro,et al.  Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case , 2000, International Journal of Computer Vision.

[52]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[53]  Tony F. Chan,et al.  Variational Restoration of Nonflat Image Features: Models and Algorithms , 2001, SIAM J. Appl. Math..

[54]  Niklas Nordström,et al.  Biased anisotropic diffusion: a unified regularization and diffusion approach to edge detection , 1990, Image Vis. Comput..

[55]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .