Focusing on Bandwidth: Achromatic Metalens Limits

We derive fundamental bandwidth limits on achromatic optical metalenses, regardless of their implementation. Specifically, we discuss the product between achievable time delay and bandwidth, and apply well-established bounds on this product to a general focusing system.

[1]  Jing Wen,et al.  An achromatic metalens in the near-infrared region with an array based on a single nano-rod unit , 2019, Applied Physics Express.

[2]  A. Alú,et al.  Nonreciprocal cavities and the time–bandwidth limit , 2018, Optica.

[3]  Federico Capasso,et al.  A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures , 2018, Nature Communications.

[4]  Federico Capasso,et al.  A broadband achromatic metalens for focusing and imaging in the visible , 2018, Nature Nanotechnology.

[5]  H. Kurt,et al.  Polarization-insensitive beam splitters using all-dielectric phase gradient metasurfaces at visible wavelengths. , 2018, Optics letters.

[6]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[7]  Ben-Hur V. Borges,et al.  High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs , 2019 .

[8]  Steven G. Johnson,et al.  Overlapping domains for topology optimization of large-area metasurfaces. , 2019, Optics express.

[9]  O. Miller,et al.  High-NA achromatic metalenses by inverse design. , 2019, Optics express.

[10]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[11]  High-NA, Achromatic, Visible-Frequency Metalenses by Inverse Design , 2019, Frontiers in Optics + Laser Science APS/DLS.

[12]  Larry Griffin,et al.  Stochastic simulations reveal few green wave surfing populations among spring migrating herbivorous waterfowl , 2019, Nature Communications.

[13]  R. Fano Theoretical limitations on the broadband matching of arbitrary impedances , 1950 .

[14]  R.S. Tucker,et al.  Slow-light optical buffers: capabilities and fundamental limitations , 2005, Journal of Lightwave Technology.

[15]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[16]  B. Shen,et al.  Broadband imaging with one planar diffractive lens , 2017, Scientific Reports.

[17]  Rajesh Menon,et al.  Imaging with flat optics: metalenses or diffractive lenses? , 2019, Optica.

[18]  Adriana Szeghalmi,et al.  Materials Pushing the Application Limits of Wire Grid Polarizers further into the Deep Ultraviolet Spectral Range , 2016, 1607.04866.

[19]  Federico Capasso,et al.  Metalenses: Versatile multifunctional photonic components , 2017, Science.

[20]  Federico Capasso,et al.  Achromatic metalens over 60 nm bandwidth in the visible , 2017, CLEO 2017.

[21]  D. Tsai,et al.  Broadband achromatic optical metasurface devices , 2017, Nature Communications.

[22]  Din Ping Tsai,et al.  Metalenses: Advances and Applications , 2018, Advanced Optical Materials.

[23]  Philippe Lalanne,et al.  Metalenses at visible wavelengths: past, present, perspectives , 2016 .

[24]  Seyedeh Mahsa Kamali,et al.  Controlling the sign of chromatic dispersion in diffractive optics , 2017, 1701.07178.

[25]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[26]  David A B Miller,et al.  Fundamental limit to linear one-dimensional slow light structures. , 2007, Physical review letters.

[27]  Andrea Alù,et al.  Invisibility exposed: physical bounds on passive cloaking , 2016 .

[28]  Arka Majumdar,et al.  Metasurface optics for full-color computational imaging , 2018, Science Advances.

[29]  Thomas Pertsch,et al.  General design formalism for highly efficient flat optics for broadband applications. , 2020, Optics express.

[30]  Andrea Alù,et al.  Performing Mathematical Operations with Metamaterials , 2014, Science.

[31]  George V. Eleftheriades,et al.  Huygens' metasurfaces via the equivalence principle: design and applications , 2016 .

[32]  Federico Capasso,et al.  Aberrations of flat lenses and aplanatic metasurfaces. , 2013, Optics express.

[33]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[34]  C. H. Chu,et al.  Achromatic metalens array for full-colour light-field imaging , 2019, Nature Nanotechnology.

[36]  Alexander Soibel,et al.  Solid-immersion metalenses for infrared focal plane arrays , 2018, Applied Physics Letters.

[37]  Mao Ye,et al.  Achromatic Flat Subwavelength Grating Lens Over Whole Visible Bandwidths , 2018, IEEE Photonics Technology Letters.

[38]  Federico Capasso,et al.  Broadband high-efficiency dielectric metasurfaces for the visible spectrum , 2016, Proceedings of the National Academy of Sciences.

[39]  D. Pozar Flat lens antenna concept using aperture coupled microstrip patches , 1996 .

[40]  N. Yu,et al.  Broadband achromatic dielectric metalenses , 2018, Light, science & applications.

[41]  M. Patrini,et al.  Optical functions from 0.02 to 6 eV of AlxGa1−xSb/GaSb epitaxial layers , 1998 .

[42]  A. A. Fathnan,et al.  Bandwidth and size limits of achromatic printed-circuit metasurfaces. , 2018, Optics express.

[43]  Wei Hu,et al.  Broadband achromatic metalens in Terahertz regime , 2019, 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz).

[44]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[45]  Anders Pors,et al.  Analog computing using reflective plasmonic metasurfaces. , 2015, Nano letters.

[46]  Jacob B. Khurgin,et al.  Bandwidth Limitation in Slow Light Schemes , 2008, Slow Light.

[47]  S. Tretyakov Analytical Modeling in Applied Electromagnetics , 2003 .

[48]  J. Wyant,et al.  Basic Wavefront Aberration Theory for Optical Metrology , 1992 .