Direct oxidation of cycloalkanes to cycloalkanones with oxygen in water.

It doesn't take much to oxidize cycloalkanes directly to the corresponding cyclic ketones: molecular oxygen as the oxidant, water as the solvent, the cofactor NADP(+) (and a little 2-propanol to reduce it), as well as two catalytic enzymes-a hydroxylating P450 monooxygenase and an alcohol dehydrogenase. (Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)

[1]  J. Falck,et al.  An Active Site Substitution, F87V, Converts Cytochrome P450 BM-3 into a Regio- and Stereoselective (14S,15R)-Arachidonic Acid Epoxygenase* , 1997, The Journal of Biological Chemistry.

[2]  G. Huisman,et al.  Engineering the third wave of biocatalysis , 2012, Nature.

[3]  Chi‐Huey Wong,et al.  Lactobacillus kefir alcohol dehydrogenase: a useful catalyst for synthesis , 1992 .

[4]  Frances H Arnold,et al.  Evolutionary history of a specialized p450 propane monooxygenase. , 2008, Journal of molecular biology.

[5]  R. Fasan Tuning P450 Enzymes as Oxidation Catalysts , 2012 .

[6]  V. Urlacher,et al.  Recent advances in oxygenase-catalyzed biotransformations. , 2006, Current opinion in chemical biology.

[7]  Jullien Drone,et al.  A regioselective biocatalyst for alkane activation under mild conditions. , 2011, Angewandte Chemie.

[8]  Vlada B Urlacher,et al.  Screening of a minimal enriched P450 BM3 mutant library for hydroxylation of cyclic and acyclic alkanes. , 2011, Chemical communications.

[9]  Z. Lukacs,et al.  Microbial Asymmetric CH Oxidations of Simple Hydrocarbons: A Novel Monooxygenase Activity of the Topsoil Microorganism Bacillus megaterium , 2000 .

[10]  Christian Wandrey,et al.  Industrial Biotransformations: LIESE: INDUSTRIAL BIOTRANSFORMATIONS O-BK , 2006 .

[11]  M. Wilmanns,et al.  Understanding a mechanism of organic cosolvent inactivation in heme monooxygenase P450 BM-3. , 2007, Journal of the American Chemical Society.

[12]  Qing-Shan Li,et al.  Hydroxylation activity of P450 BM-3 mutant F87V towards aromatic compounds and its application to the synthesis of hydroquinone derivatives from phenolic compounds , 2005, Applied Microbiology and Biotechnology.

[13]  Manfred T Reetz,et al.  Tuning a p450 enzyme for methane oxidation. , 2011, Angewandte Chemie.

[14]  Vlada B Urlacher,et al.  Cytochrome P450 monooxygenases: perspectives for synthetic application. , 2006, Trends in biotechnology.

[15]  U. Schwaneberg,et al.  A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes. , 2001, Journal of biotechnology.

[16]  Oliver May,et al.  Enantioselective reduction of ketones with "designer cells" at high substrate concentrations: highly efficient access to functionalized optically active alcohols. , 2006, Angewandte Chemie.

[17]  C. Knowles,et al.  Biotransformation of endo-bicyclo[2.2.1 ]heptan-2-ols and endo-bicyclo[3.2.0]hept-2-en-6-ol into the corresponding lactones , 1991 .

[18]  H. Gröger,et al.  Enantioselektive Ketonreduktion mit “Designerzellen” bei hohen Substratkonzentrationen: hocheffizienter Zugang zu funktionalisierten optisch aktiven Alkoholen† , 2006 .

[19]  W. Hummel,et al.  Cloning, expression, and characterization of an (R)-specific alcohol dehydrogenase from Lactobacillus kefir , 2006 .

[20]  Jan Marienhagen,et al.  Biocatalytic hydroxylation of n-butane with in situ cofactor regeneration at low temperature and under normal pressure , 2012, Beilstein journal of organic chemistry.

[21]  V. Urlacher,et al.  Catalytic Hydroxylation in Biphasic Systems using CYP102A1 Mutants , 2005 .

[22]  Frances H Arnold,et al.  Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties. , 2007, Angewandte Chemie.

[23]  V. Urlacher,et al.  Immobilisation of P450 BM‐3 and an NADP+ Cofactor Recycling System: Towards a Technical Application of Heme‐Containing Monooxygenases in Fine Chemical Synthesis , 2003 .

[24]  F. Arnold,et al.  Directed Evolution of a Cytochrome P450 Monooxygenase for Alkane Oxidation , 2001 .