Three-dimensional analysis of synapses in the transentorhinal cortex of Alzheimer’s disease patients

[1]  M. L. Luque,et al.  Informe de la Fundación del Cerebro. Impacto social de la enfermedad de Alzheimer y otras demencias , 2017 .

[2]  T. Biederer,et al.  Transcellular Nanoalignment of Synaptic Function , 2017, Neuron.

[3]  Ricardo Insausti,et al.  The Human Periallocortex: Layer Pattern in Presubiculum, Parasubiculum and Entorhinal Cortex. A Review , 2017, Front. Neuroanat..

[4]  C. Revnic,et al.  THE EFFECT OF SERUM FACTORS FROM PATIENTS WITH/WITHOUT ESSENTIAL HYPERTENSIOIN ON MEMBRANE RECEPTORS FROM RAT CEREBRAL CORTEX VASCULAR AND CARDIAC MUSCLE CELLS , 2017, Alzheimer's & Dementia.

[5]  Rosemary J. Jackson,et al.  Tau association with synaptic vesicles causes presynaptic dysfunction , 2017, Nature Communications.

[6]  P. Hof,et al.  Monoaminergic neuropathology in Alzheimer’s disease , 2017, Progress in Neurobiology.

[7]  T. Spires-Jones,et al.  Synaptic pathology: A shared mechanism in neurological disease , 2016, Ageing Research Reviews.

[8]  H. Braak,et al.  The preclinical phase of the pathological process underlying sporadic Alzheimer's disease. , 2015, Brain : a journal of neurology.

[9]  J. Hardy,et al.  Neurobiology of Alzheimer’s Disease: Integrated Molecular, Physiological, Anatomical, Biomarker, and Cognitive Dimensions , 2015, Current Alzheimer research.

[10]  J. Herms,et al.  Analyzing dendritic spine pathology in Alzheimer’s disease: problems and opportunities , 2015, Acta Neuropathologica.

[11]  Javier DeFelipe,et al.  The dendritic spine story: an intriguing process of discovery , 2015, Front. Neuroanat..

[12]  Frederick A Schmitt,et al.  Synaptic change in the posterior cingulate gyrus in the progression of Alzheimer's disease. , 2014, Journal of Alzheimer's disease : JAD.

[13]  Concha Bielza,et al.  Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis , 2014, Front. Neuroanat..

[14]  R. Yuste,et al.  Spatial distribution of neurons innervated by chandelier cells , 2014, Brain Structure and Function.

[15]  Yuji Naya,et al.  The perirhinal cortex. , 2014, Annual review of neuroscience.

[16]  Bradley T. Hyman,et al.  The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer’s Disease , 2014, Neuron.

[17]  J. DeFelipe,et al.  Selective alterations of neurons and circuits related to early memory loss in Alzheimer’s disease , 2014, Front. Neuroanat..

[18]  J. Pozueta,et al.  Synaptic changes in Alzheimer’s disease and its models , 2013, Neuroscience.

[19]  P. Dodd,et al.  The synaptic proteome in Alzheimer's disease , 2013, Alzheimer's & Dementia.

[20]  J. DeFelipe,et al.  The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease , 2013, Brain : a journal of neurology.

[21]  A. Levey,et al.  Proteomic analysis of postsynaptic density in Alzheimer's disease. , 2013, Clinica chimica acta; international journal of clinical chemistry.

[22]  J. DeFelipe,et al.  Synaptic Changes in the Dentate Gyrus of APP/PS1 Transgenic Mice Revealed by Electron Microscopy , 2013, Journal of neuropathology and experimental neurology.

[23]  W. Thies,et al.  2013 Alzheimer's disease facts and figures , 2013, Alzheimer's & Dementia.

[24]  J. DeFelipe,et al.  GSK-3β overexpression causes reversible alterations on postsynaptic densities and dendritic morphology of hippocampal granule neurons in vivo , 2013, Molecular Psychiatry.

[25]  H. Braak,et al.  Where, when, and in what form does sporadic Alzheimer's disease begin? , 2012, Current opinion in neurology.

[26]  T. Kemper,et al.  A review of the structural alterations in the cerebral hemispheres of the aging rhesus monkey , 2012, Neurobiology of Aging.

[27]  T. Südhof The Presynaptic Active Zone , 2012, Neuron.

[28]  Masahiko Watanabe,et al.  Release probability of hippocampal glutamatergic terminals scales with the size of the active zone , 2012, Nature Neuroscience.

[29]  I. Ferrer Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia , 2012, Progress in Neurobiology.

[30]  Dietmar R. Thal,et al.  Stages of the Pathologic Process in Alzheimer Disease: Age Categories From 1 to 100 Years , 2011, Journal of neuropathology and experimental neurology.

[31]  B. Hyman,et al.  Neuropathological alterations in Alzheimer disease. , 2011, Cold Spring Harbor perspectives in medicine.

[32]  W. Klein,et al.  Aβ Oligomer-Induced Synapse Degeneration in Alzheimer’s Disease , 2011, Cellular and Molecular Neurobiology.

[33]  Javier DeFelipe,et al.  Espina: A Tool for the Automated Segmentation and Counting of Synapses in Large Stacks of Electron Microscopy Images , 2011, Front. Neuroanat..

[34]  G. V. Van Hoesen,et al.  Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers , 2010, Human brain mapping.

[35]  Masahiko Watanabe,et al.  Input-Specific Intrasynaptic Arrangements of Ionotropic Glutamate Receptors and Their Impact on Postsynaptic Responses , 2009, The Journal of Neuroscience.

[36]  Yaakov Stern,et al.  Cognitive Reserve: Implications for Assessment and Intervention , 2013, Folia Phoniatrica et Logopaedica.

[37]  Javier DeFelipe,et al.  Counting Synapses Using FIB/SEM Microscopy: A True Revolution for Ultrastructural Volume Reconstruction , 2009, Front. Neuroanat..

[38]  Thomas Arendt,et al.  Synaptic degeneration in Alzheimer’s disease , 2009, Acta Neuropathologica.

[39]  Kirsten I. Taylor,et al.  Anatomic localization of the transentorhinal region of the perirhinal cortex , 2008, Neurobiology of Aging.

[40]  J. DeFelipe,et al.  Gender differences in human cortical synaptic density , 2008, Proceedings of the National Academy of Sciences.

[41]  D. Amaral,et al.  Entorhinal cortex of the monkey: IV. Topographical and laminar organization of cortical afferents , 2008, The Journal of comparative neurology.

[42]  F. Schmitt,et al.  Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment , 2007, Neurology.

[43]  W. Klein,et al.  Aβ Oligomer-Induced Aberrations in Synapse Composition, Shape, and Density Provide a Molecular Basis for Loss of Connectivity in Alzheimer's Disease , 2007, The Journal of Neuroscience.

[44]  F. Schmitt,et al.  Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment , 2006, Neurobiology of Aging.

[45]  Y. Stern Cognitive Reserve and Alzheimer Disease , 2006, Alzheimer disease and associated disorders.

[46]  G. Cole,et al.  Synaptic changes in Alzheimer's disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. , 2004, The American journal of pathology.

[47]  Roger Kurlan,et al.  A focus on the synapse for neuroprotection in Alzheimer disease and other dementias , 2004, Neurology.

[48]  S. Scheff,et al.  Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies , 2003, Neurobiology of Aging.

[49]  D. Selkoe Alzheimer's Disease Is a Synaptic Failure , 2002, Science.

[50]  Y. Stern What is cognitive reserve? Theory and research application of the reserve concept , 2002, Journal of the International Neuropsychological Society.

[51]  G. Arendash,et al.  Maintained synaptophysin immunoreactivity in Tg2576 transgenic mice during aging: correlations with cognitive impairment , 2002, Brain Research.

[52]  E. Masliah,et al.  Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease , 2001, Neurology.

[53]  J DeFelipe,et al.  Estimation of the number of synapses in the cerebral cortex: methodological considerations. , 1999, Cerebral cortex.

[54]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[55]  S. Scheff,et al.  Synaptic density in the inner molecular layer of the hippocampal dentate gyrus in Alzheimer disease. , 1998, Journal of neuropathology and experimental neurology.

[56]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[57]  D. Price,et al.  Loss of the Presynaptic Vesicle Protein Synaptophysin in Hippocampus Correlates with Cognitive Decline in Alzheimer Disease , 1997, Journal of neuropathology and experimental neurology.

[58]  J. Morris,et al.  Profound Loss of Layer II Entorhinal Cortex Neurons Occurs in Very Mild Alzheimer’s Disease , 1996, The Journal of Neuroscience.

[59]  H. Braak,et al.  Topical Review: Functional Anatomy of Human Hippocampal Formation and Related Structures , 1996 .

[60]  D. Sparks,et al.  Quantitative assessment of synaptic density in the outer molecular layer of the hippocampal dentate gyrus in Alzheimer's disease. , 1996, Dementia.

[61]  Wendy A Suzuki,et al.  The anatomy, physiology and functions of the perirhinal cortex , 1996, Current Opinion in Neurobiology.

[62]  W. Honer,et al.  Correlations of synaptic and pathological markers with cognition of the elderly , 1995, Neurobiology of Aging.

[63]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents , 1994, The Journal of comparative neurology.

[64]  W. Suzuki,et al.  Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  D. Sparks,et al.  Quantitative assessment of synaptic density in the entorhinal cortex in Alzheimer's disease , 1993, Annals of neurology.

[66]  J DeFelipe,et al.  A simple and reliable method for correlative light and electron microscopic studies. , 1993, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[67]  D. Price,et al.  Synapse loss in the temporal lobe in Alzheimer's disease , 1993, Annals of neurology.

[68]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[69]  W. Honer,et al.  Regional synaptic pathology in Alzheimer's disease , 1992, Neurobiology of Aging.

[70]  S. M. Sumi,et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) , 1991, Neurology.

[71]  E. Masliah,et al.  Quantitative immunohistochemistry of synaptophysin in human neocortex: an alternative method to estimate density of presynaptic terminals in paraffin sections. , 1990, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[72]  Stephen W. Scheff,et al.  Quantitative assessment of cortical synaptic density in Alzheimer's disease , 1990, Neurobiology of Aging.

[73]  H. J. G. GUNDERSEN,et al.  Some new, simple and efficient stereological methods and their use in pathological research and diagnosis , 1988, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[74]  D. Doyle The Fine Structure of the Nervous System: The Neurons and Supporting Cells , 1978 .

[75]  Denis Dooley,et al.  Atlas of the Human Brain. , 1971 .

[76]  Gray Eg Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study , 1959 .

[77]  P. Reddy,et al.  Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer's disease Neurons. , 2017, Journal of Alzheimer's disease : JAD.

[78]  Javier DeFelipe,et al.  FIB/SEM technology and Alzheimer's disease: three-dimensional analysis of human cortical synapses. , 2013, Journal of Alzheimer's disease : JAD.

[79]  C. Bielza,et al.  Supplementary Material Three-Dimensional Spatial Distribution of Synapses in the Neocortex : a Dual-Beam Electron Microscopy Study , 2012 .

[80]  F. Schmitt,et al.  Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer's disease. , 2011, Journal of Alzheimer's disease : JAD.

[81]  Hyoung-Gon Lee,et al.  Phosphorylated tau: toxic, protective, or none of the above. , 2008, Journal of Alzheimer's disease : JAD.

[82]  W. Klein,et al.  Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. , 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  S. Scheff,et al.  Alzheimer's disease-related alterations in synaptic density: neocortex and hippocampus. , 2006, Journal of Alzheimer's disease : JAD.

[84]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[85]  D. Nicholson,et al.  Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities , 2004, The Journal of comparative neurology.

[86]  H. Braak,et al.  On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer's disease , 2004, Acta Neuropathologica.

[87]  S. Palay,et al.  The morphology of synapses , 1996, Journal of neurocytology.

[88]  B T Hyman,et al.  Entorhinal cortex pathology in Alzheimer's disease , 1991, Hippocampus.

[89]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.