Ordered Nanopillar Structured Electrodes for Depleted Bulk Heterojunction Colloidal Quantum Dot Solar Cells

A bulk heterojunction of ordered titania nanopillars and PbS colloidal quantum dots is developed. By using a pre-patterned template, an ordered titania nanopillar matrix with nearest neighbours 275 nm apart and height of 300 nm is fabricated and subsequently filled in with PbS colloidal quantum dots to form an ordered depleted bulk heterojunction exhibiting power conversion efficiency of 5.6%.

[1]  Moungi G Bawendi,et al.  Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. , 2011, Nano letters.

[2]  E. Sargent Infrared photovoltaics made by solution processing , 2009 .

[3]  Byoung Hun Lee,et al.  Fast transient charging at the graphene/SiO2 interface causing hysteretic device characteristics , 2011 .

[4]  Feng Liu,et al.  Metastable Phase in Undercooled Fe-Co Alloy , 2011 .

[5]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[6]  A. J. Frank,et al.  Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Electrical Impedance and Optical Modulation Techniques , 2000 .

[7]  Prashant Nagpal,et al.  Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films , 2011, Nature communications.

[8]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[9]  Joy Y. Cheng,et al.  Formation and photopatterning of nanoporous titania thin films , 2007 .

[10]  Illan J. Kramer,et al.  Solar cells using quantum funnels. , 2011, Nano letters.

[11]  Ratan Debnath,et al.  Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics , 2011, Advanced materials.

[12]  I. Lindau,et al.  New and unified model for Schottky barrier and III–V insulator interface states formation , 1979 .

[13]  M. Green Third generation photovoltaics : advanced solar energy conversion , 2006 .

[14]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[15]  Jianbo Gao,et al.  n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. , 2011, Nano letters.

[16]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[17]  C. Rettner,et al.  Transfer molding of nanoscale oxides using water-soluble templates. , 2011, ACS nano.

[18]  Illan J. Kramer,et al.  Dead zones in colloidal quantum dot photovoltaics: evidence and implications. , 2010, Optics express.

[19]  Edward H. Sargent,et al.  Efficient Schottky-quantum-dot photovoltaics: The roles of depletion, drift, and diffusion , 2008 .

[20]  N. S. Sariciftci,et al.  A review of charge transport and recombination in polymer/fullerene organic solar cells , 2007 .

[21]  Ghada I. Koleilat,et al.  Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells , 2011, Advanced materials.

[22]  E. Aydil,et al.  Nanowire-quantum-dot solar cells and the influence of nanowire length on the charge collection efficiency , 2009 .

[23]  Edward H Sargent,et al.  Colloidal quantum dot photovoltaics: a path forward. , 2011, ACS nano.