Spatial Preprocessing Based Multinomial Logistic Regression for Hyperspectral Image Classification

Abstract The paper presents a fast, reliable and efficient method for improving hyperspectral image classification aided by segmentation. The Multinomial Logistic Regression(MLR) algorithm can be extended to a semi-supervised learning of the posterior class distribution using unlabeled samples actively selected from the dataset. Classification results obtained from regression model is improved by performing a maximum a posteriori segmentation as it considers the spatial information of the hyperspectral image. The addition of the spatial processing step prior to the above mentioned classification scheme improves the overall accuracy of the process. The accuracies obtained before and after applying the preprocessing are compared.

[1]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[2]  Chandrika Kamath,et al.  Comparison of PDE-based non-linear anistropic diffusion techniques for image denoising , 2003, IS&T/SPIE Electronic Imaging.

[3]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[6]  Antonio J. Plaza,et al.  Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression With Active Learning , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Heesung Kwon,et al.  Algorithms for Multispectral and Hyperspectral Image Analysis , 2013, J. Electr. Comput. Eng..

[8]  Lawrence Carin,et al.  Semi-Supervised Classification , 2004, Encyclopedia of Database Systems.

[9]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[10]  David J. C. MacKay,et al.  Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.

[11]  V. Sowmya,et al.  Spatial preprocessing for improved sparsity based hyperspectral image classification , 2012 .

[12]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[13]  D. Böhning Multinomial logistic regression algorithm , 1992 .

[14]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[15]  José M. Bioucas-Dias,et al.  Evaluation of bayesian hyperspectral image segmentation with a discriminative class learning , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[16]  Santiago Velasco-Forero,et al.  Improving Hyperspectral Image Classification Using Spatial Preprocessing , 2009, IEEE Geoscience and Remote Sensing Letters.

[17]  Vladimir Kolmogorov,et al.  An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Stan Z. Li,et al.  Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.

[19]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[20]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[21]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..