Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima : asymptotic expansions
暂无分享,去创建一个
[1] Barry Simon,et al. Semiclassical analysis of low lying eigenvalues, II. Tunneling* , 1984 .
[2] J. Combes,et al. Krein's formula and one-dimensional multiple-well , 1983 .
[3] The twisting trick for double well Hamiltonians , 1982 .
[4] I. Sigal. Geometric methods in the quantum many-body problem. Nonexistence of very negative ions , 1982 .
[5] I. Sigal. Geometric methods in quantum many-body problem , 1982 .
[6] B. Simon. Spectrum and continuum eigenfunctions of Schrödinger operators , 1981 .
[7] I. Problem,et al. Dilation Analyticity in Constant Electric Field , 1981 .
[8] R. Woolley. Quantum Dynamics of Molecules , 1980 .
[9] D. W. Noid,et al. Semiclassical studies of bound states and molecular dynamics , 1979 .
[10] J. Combes,et al. Regularity and asymptotic properties of the discrete spectrum of electronic Hamiltonians , 1978 .
[11] R. Ahlrichs. Convergence properties of the intermolecular force series (1/R-expansion) , 1976 .
[12] L. Thomas,et al. Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators , 1973 .
[13] Barry Simon,et al. Coupling constant analyticity for the anharmonic oscillator , 1970 .
[14] Tosio Kato. Perturbation theory for linear operators , 1966 .