Water-soluble Cu_30 nanoclusters as a click chemistry catalyst for living cell labeling via azide-alkyne cycloaddition

[1]  Jie Zhao,et al.  Heterogeneous Cu catalyst in organic transformations , 2021, Nano Research.

[2]  J. Xie,et al.  Shining photocatalysis by gold-based nanomaterials , 2021 .

[3]  R. Jin Homoleptic Alkynyl-protected Ag15 Nanocluster with Atomic Precision: Structural Analysis and Electrocatalytic Performance toward CO2 Reduction. , 2021, Angewandte Chemie.

[4]  J. Xie,et al.  Engineering Metal Nanoclusters for Targeted Therapeutics: From Targeting Strategies to Therapeutic Applications , 2021, Advanced Functional Materials.

[5]  A. Rogach,et al.  Aggregation‐induced emission of copper nanoclusters , 2021, Aggregate.

[6]  D. Jiang,et al.  Revealing the etching process of water-soluble Au25 nanoclusters at the molecular level , 2021, Nature Communications.

[7]  Jong Suk Yoo,et al.  Atomically Precise Gold Nanoclusters as Model Catalysts for Identifying Active Sites for Electroreduction of CO2​. , 2021, Angewandte Chemie.

[8]  Chaoqun You,et al.  Small-Molecule-Selective Organosilica Nanoreactors for Copper-Catalyzed Azide-Alkyne Cycloaddition Reactions in Cellular and Living Systems. , 2021, Nano letters.

[9]  N. Zheng,et al.  Titanium–oxo cluster reinforced gel polymer electrolyte enabling lithium–sulfur batteries with high gravimetric energy densities , 2021 .

[10]  William M. Lee,et al.  Noninvasive monitoring of hepatic glutathione depletion through fluorescence imaging and blood testing , 2021, Science Advances.

[11]  D. Astruc,et al.  Insight into the Mechanism of the CuAAC Reaction by Capturing the Crucial Au4Cu4-π-Alkyne Intermediate. , 2021, Journal of the American Chemical Society.

[12]  Zhennan Wu,et al.  Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications , 2021, Aggregate.

[13]  R. Jin,et al.  Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature , 2021, Science Advances.

[14]  V. Ravichandiran,et al.  Cycloaddition of N-sulfonyl and N-sulfamoyl azides with alkynes in aqueous media for the selective synthesis of 1,2,3-triazoles , 2021, Green Chemistry.

[15]  O. Bakr,et al.  [Cu23(PhSe)16(Ph3P)8(H)6]·BF4: Atomic-Level Insights into Cuboidal Polyhydrido Copper Nanoclusters and Their Quasi-simple Cubic Self-Assembly , 2020, ACS Materials Letters.

[16]  D. Mooney,et al.  Metabolic glycan labelling for cancer-targeted therapy , 2020, Nature Chemistry.

[17]  Huanghao Yang,et al.  A New Class of NIR‐II Gold Nanocluster‐Based Protein Biolabels for In Vivo Tumor‐Targeted Imaging , 2020, Angewandte Chemie.

[18]  Yanchun Li,et al.  Distance makes a difference in crystalline photoluminescence , 2020, Nature Communications.

[19]  Rajendran J C Bose,et al.  Labeling and tracking cells with gold nanoparticles. , 2020, Drug discovery today.

[20]  Huanghao Yang,et al.  A New Class of NIR-II Gold Nanoclusters Based Protein Biolabels for In Vivo Tumor-Targeted Imaging. , 2020, Angewandte Chemie.

[21]  S. Zimmerman,et al.  A Bioorthogonal Small Molecule Selective Polymeric "Clickase". , 2020, Journal of the American Chemical Society.

[22]  M. Meldal,et al.  Recent Fascinating Aspects of the CuAAC Click Reaction , 2020, Trends in Chemistry.

[23]  X. Qu,et al.  Near-Infrared Light Dual-Promoted Heterogeneous Copper Nanocatalyst for Highly Efficient Bioorthogonal Chemistry In Vivo. , 2020, ACS nano.

[24]  R. Jin,et al.  Chirality and Surface Bonding Correlation in Atomically Precise Metal Nanoclusters , 2020, Advanced materials.

[25]  Lina Sui,et al.  Effect of subtle changes of isomeric ligands on the synthesis of atomically precise water-soluble gold nanoclusters. , 2020, Nanoscale.

[26]  C. Tung,et al.  Polymorphism in Atomically Precise Cu23 Nanocluster Incorporating Tetrahedral [Cu4]0 Kernel. , 2020, Journal of the American Chemical Society.

[27]  M. Shu,et al.  Structural Relaxation Enabled by Internal Vacancy Available in a 24-atom Gold Cluster Reinforces Catalytic Reactivity. , 2020, Journal of the American Chemical Society.

[28]  Xi-Yan Dong,et al.  Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency , 2020, Science Advances.

[29]  Shuangquan Zang,et al.  Photoresponsive Propeller‐like Chiral AIE Copper(I) Clusters , 2020 .

[30]  Shuangquan Zang,et al.  Photo-responsive propeller-like chiral AIE Cu(I) clusters. , 2020, Angewandte Chemie.

[31]  Xi-Yan Dong,et al.  AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. , 2019, Angewandte Chemie.

[32]  Guosong Hong,et al.  Atomic‐Precision Gold Clusters for NIR‐II Imaging , 2019, Advanced materials.

[33]  G. Nienhaus,et al.  Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis , 2019, Nano Today.

[34]  Xi-Yan Dong,et al.  AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters , 2019, Angewandte Chemie.

[35]  Quan‐Ming Wang,et al.  Solvent-triggered reversible interconversion of all-nitrogen-donor-protected silver nanoclusters and their responsive optical properties , 2019, Nature Communications.

[36]  P. Thuéry,et al.  Strain-Promoted 1,3-Dithiolium-4-olates/Alkyne Cycloaddition. , 2019, Angewandte Chemie.

[37]  P. Thuéry,et al.  Strain‐Promoted 1,3‐Dithiolium‐4‐olates–Alkyne Cycloaddition , 2019, Angewandte Chemie.

[38]  H. Häkkinen,et al.  Chiral footprint of the ligand layer in the all-alkynyl-protected gold nanocluster Au144(CCPhF)60. , 2019, Chemical communications.

[39]  Xi-Yan Dong,et al.  Cu14 Cluster with Partial Cu(0) Character: Difference in Electronic Structure from Isostructural Silver Analog , 2019, Advanced science.

[40]  Bujie Du,et al.  Glutathione-mediated biotransformation in the liver modulates nanoparticle transport , 2019, Nature Nanotechnology.

[41]  Manzhou Zhu,et al.  Near Infrared Electrochemiluminescence of Rod-Shape 25-Atom AuAg Nanoclusters That Is Hundreds-Fold Stronger Than That of Ru(bpy)3 Standard. , 2019, Journal of the American Chemical Society.

[42]  R. Jin,et al.  Luminescent metal nanoclusters for biomedical applications , 2019, Nano Research.

[43]  Manzhou Zhu,et al.  Tailoring the photoluminescence of atomically precise nanoclusters. , 2019, Chemical Society reviews.

[44]  Lingshan Gong,et al.  Amphiphilic Block Copolymer-Guided in Situ Fabrication of Stable and Highly Controlled Luminescent Copper Nanoassemblies. , 2019, Journal of the American Chemical Society.

[45]  E. Sargent,et al.  N-heterocyclic carbene-functionalized magic-number gold nanoclusters , 2018, Nature Chemistry.

[46]  K. Cheng,et al.  Pretargeting and Bioorthogonal Click Chemistry-Mediated Endogenous Stem Cell Homing for Heart Repair. , 2018, ACS nano.

[47]  B. Kumar,et al.  Alloy Clusters: Precise Synthesis and Mixing Effects. , 2018, Accounts of chemical research.

[48]  N. Zheng,et al.  Surface Chemistry of Atomically Precise Coinage-Metal Nanoclusters: From Structural Control to Surface Reactivity and Catalysis. , 2018, Accounts of chemical research.

[49]  Quan‐Ming Wang,et al.  Alkynyl Approach toward the Protection of Metal Nanoclusters. , 2018, Accounts of chemical research.

[50]  P. Yang,et al.  Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production , 2018, Nature Nanotechnology.

[51]  V. Fokin,et al.  Catalyst Activation, Chemoselectivity, and Reaction Rate Controlled by the Counterion in the Cu(I)-Catalyzed Cycloaddition between Azide and Terminal or 1-Iodoalkynes , 2018, ACS Catalysis.

[52]  A. Rogach,et al.  Water‐Soluble Biocompatible Copolymer Hypromellose Grafted Chitosan Able to Load Exogenous Agents and Copper Nanoclusters with Aggregation‐Induced Emission , 2018, Advanced Functional Materials.

[53]  David Tai Leong,et al.  Antimicrobial silver nanomaterials , 2018 .

[54]  T. Pradeep,et al.  Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. , 2017, Chemical reviews.

[55]  Xi-Yan Dong,et al.  Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. , 2017, Nature chemistry.

[56]  R. Jin,et al.  Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. , 2016, Chemical reviews.

[57]  P. Li,et al.  Metal exchange method using Au25 nanoclusters as templates for alloy nanoclusters with atomic precision. , 2015, Journal of the American Chemical Society.

[58]  Y. Yu,et al.  Introducing amphiphilicity to noble metal nanoclusters via phase-transfer driven ion-pairing reaction. , 2015, Journal of the American Chemical Society.

[59]  Jianping Xie,et al.  Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au(25) nanoclusters with atomic precision. , 2014, Angewandte Chemie.

[60]  Ick Chan Kwon,et al.  Cell Labeling and Tracking Method without Distorted Signals by Phagocytosis of Macrophages , 2014, Theranostics.

[61]  U. Landman,et al.  Ultrastable silver nanoparticles , 2013, Nature.

[62]  R. Jin,et al.  Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. , 2011, Journal of the American Chemical Society.

[63]  Yingjun Wang,et al.  A promoted copper-catalysed Azide-alkyne cycloaddition (CuAAC) for broad spectrum peptide-engineered implants , 2022 .