Computation of Saddle-Type Slow Manifolds Using Iterative Methods

This paper presents an alternative approach for the computation of trajectory segments on slow manifolds of saddle type. This approach is based on iterative methods rather than collocation-type methods. Compared to collocation methods, which require mesh refinements to ensure uniform convergence with respect to $\epsilon$, appropriate estimates are directly attainable using the method of this paper. The method is applied to several examples, including a model for a pair of neurons coupled by reciprocal inhibition with two slow and two fast variables, and the computation of homoclinic connections in the FitzHugh--Nagumo system.

[1]  D. Siegel,et al.  Properties of the Lindemann Mechanism in Phase Space , 2010, 1003.3692.

[2]  R. MacKay,et al.  Energy localisation and transfer , 2004 .

[3]  K. U. Kristiansen,et al.  Exponential estimates of slow manifolds , 2012 .

[4]  Mauro Valorani,et al.  An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems , 2006, J. Comput. Phys..

[5]  V. Gelfreich,et al.  Long-periodic orbits and invariant tori in a singularly perturbed Hamiltonian system , 2003 .

[6]  Edward N. Lorenz,et al.  The Slow Manifold—What Is It? , 1992 .

[7]  S. H. Lam,et al.  Using CSP to Understand Complex Chemical Kinetics , 1993 .

[8]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[9]  Matematik,et al.  Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[10]  V. Arnold,et al.  Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics , 1989 .

[11]  M. Brøns AN ITERATIVE METHOD FOR THE CANARD EXPLOSION IN GENERAL PLANAR SYSTEMS , 2012, 1209.1109.

[12]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[13]  Bernd Krauskopf,et al.  Computing One-Dimensional Stable Manifolds and Stable Sets of Planar Maps without the Inverse , 2004, SIAM J. Appl. Dyn. Syst..

[14]  K. Uldall Kristiansen,et al.  An Iterative Method for the Approximation of Fibers in Slow-Fast Systems , 2012, SIAM J. Appl. Dyn. Syst..

[15]  A. Selverston,et al.  Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network. , 1993, Journal of neurophysiology.

[16]  Ioannis G. Kevrekidis,et al.  Projecting to a Slow Manifold: Singularly Perturbed Systems and Legacy Codes , 2005, SIAM J. Appl. Dyn. Syst..

[17]  Lars Folke Olsen,et al.  An enzyme reaction with a strange attractor , 1983 .

[18]  Martin Wechselberger,et al.  Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..

[19]  T. Erneux,et al.  Bifurcation phenomena in a laser with saturable absorber I , 1981 .

[20]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[21]  John Guckenheimer,et al.  Canards at Folded Nodes , 2005 .

[22]  John Guckenheimer,et al.  Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System , 2010, SIAM J. Appl. Dyn. Syst..

[23]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[24]  K. Nipp Numerical integration of stiff ODE's of singular perturbation type , 1991 .

[25]  Simon J. Fraser,et al.  The steady state and equilibrium approximations: A geometrical picture , 1988 .

[26]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[27]  Jacques Vanneste,et al.  Asymptotics of a Slow Manifold , 2008, SIAM J. Appl. Dyn. Syst..

[28]  Marina Bosch,et al.  Applications Of Centre Manifold Theory , 2016 .

[29]  Hans G. Kaper,et al.  Fast and Slow Dynamics for the Computational Singular Perturbation Method , 2004, Multiscale Model. Simul..

[30]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[31]  V. Gelfreich,et al.  Almost invariant elliptic manifold in a singularly perturbed Hamiltonian system , 2002 .

[32]  É. Benoît Chasse au canard , 1980 .

[33]  B. Krauskopf,et al.  Self-pulsations of lasers with saturable absorber: dynamics and bifurcations , 1999 .

[34]  Eve Marder,et al.  Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks , 1994, Journal of Computational Neuroscience.

[35]  D. Turaev,et al.  The symmetric parabolic resonance , 2010 .

[36]  I. G. Kevrekidis,et al.  Esaim: Mathematical Modelling and Numerical Analysis Analysis of the Accuracy and Convergence of Equation-free Projection to a Slow Manifold , 2022 .

[37]  John Guckenheimer,et al.  Numerical Computation of Canards , 2000, Int. J. Bifurc. Chaos.

[38]  K. Uldall Kristiansen,et al.  The Persistence of a Slow Manifold with Bifurcation , 2012, SIAM J. Appl. Dyn. Syst..

[39]  Natalia Kopteva,et al.  Shishkin meshes in the numerical solution of singularly perturbed differential equations , 2010 .

[40]  J. Laskar Large-scale chaos in the solar system. , 1994 .

[41]  Michael R. Osborne,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[42]  James Sneyd,et al.  Dynamical Probing of the Mechanisms Underlying Calcium Oscillations , 2006, J. Nonlinear Sci..

[43]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[44]  Thomas Erneux Q-switching bifurcation in a laser with a saturable absorber , 1988 .

[45]  S. H. Lam,et al.  Using CSP to Understand Complex Chemical Kinetics ∗ , 1992 .

[46]  S. H. Lam,et al.  Understanding complex chemical kinetics with computational singular perturbation , 1989 .

[47]  Klaus Kirchgässner,et al.  A theory of solitary water-waves in the presence of surface tension , 1989 .

[48]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[49]  J. Callot,et al.  Chasse au canard , 1977 .

[50]  John Guckenheimer,et al.  Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..

[51]  Inertial manifolds , 1990 .

[52]  Bernd Krauskopf,et al.  Numerical continuation of canard orbits in slow–fast dynamical systems , 2010 .

[53]  J. Laskar,et al.  Existence of collisional trajectories of Mercury, Mars and Venus with the Earth , 2009, Nature.

[54]  T. Erneux,et al.  Bifurcation phenomena in a laser with saturable absorber. II , 1981 .

[55]  John Guckenheimer,et al.  The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..

[56]  J. Guckenheimer,et al.  HOMOCLINIC ORBITS OF THE FITZHUGH-NAGUMO EQUATION: THE SINGULAR-LIMIT , 2009, 1201.5901.

[57]  R. Bellman The stability of solutions of linear differential equations , 1943 .

[58]  M. Brøns Canard explosion of limit cycles in templator models of self-replication mechanisms. , 2011, The Journal of chemical physics.

[59]  Xiao-Jing Wang,et al.  Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons , 1992, Neural Computation.

[60]  L. Lerman,et al.  Solitary wave solutions of nonlocal sine-Gordon equations. , 1998, Chaos.

[61]  Bernd Krauskopf,et al.  Solving Winfree's puzzle: the isochrons in the FitzHugh-Nagumo model. , 2014, Chaos.

[62]  Marc R. Roussel,et al.  Geometry of the steady-state approximation: Perturbation and accelerated convergence methods , 1990 .

[63]  K. Uldall Kristiansen,et al.  A Unification of Models of Tethered Satellites , 2011, SIAM J. Appl. Dyn. Syst..

[64]  Hans G. Kaper,et al.  Asymptotic analysis of two reduction methods for systems of chemical reactions , 2002 .

[65]  Michael Reinhard,et al.  Physical Chemistry A Molecular Approach , 2016 .

[66]  B. Sandstede,et al.  Fast and Slow Waves in the FitzHugh–Nagumo Equation , 1997 .

[67]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[68]  J. Rubin,et al.  Geometric Singular Perturbation Analysis of Neuronal Dynamics , 2002 .

[69]  Jonathan E. Rubin,et al.  Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model , 2007, Biological Cybernetics.

[70]  K. U. Kristiansen,et al.  On the approximation of the canard explosion point in epsilon-free systems , 2015, 1504.07752.