Computation of Saddle-Type Slow Manifolds Using Iterative Methods
暂无分享,去创建一个
[1] D. Siegel,et al. Properties of the Lindemann Mechanism in Phase Space , 2010, 1003.3692.
[2] R. MacKay,et al. Energy localisation and transfer , 2004 .
[3] K. U. Kristiansen,et al. Exponential estimates of slow manifolds , 2012 .
[4] Mauro Valorani,et al. An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems , 2006, J. Comput. Phys..
[5] V. Gelfreich,et al. Long-periodic orbits and invariant tori in a singularly perturbed Hamiltonian system , 2003 .
[6] Edward N. Lorenz,et al. The Slow Manifold—What Is It? , 1992 .
[7] S. H. Lam,et al. Using CSP to Understand Complex Chemical Kinetics , 1993 .
[8] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .
[9] Matematik,et al. Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .
[10] V. Arnold,et al. Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics , 1989 .
[11] M. Brøns. AN ITERATIVE METHOD FOR THE CANARD EXPLOSION IN GENERAL PLANAR SYSTEMS , 2012, 1209.1109.
[12] John Guckenheimer,et al. Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..
[13] Bernd Krauskopf,et al. Computing One-Dimensional Stable Manifolds and Stable Sets of Planar Maps without the Inverse , 2004, SIAM J. Appl. Dyn. Syst..
[14] K. Uldall Kristiansen,et al. An Iterative Method for the Approximation of Fibers in Slow-Fast Systems , 2012, SIAM J. Appl. Dyn. Syst..
[15] A. Selverston,et al. Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network. , 1993, Journal of neurophysiology.
[16] Ioannis G. Kevrekidis,et al. Projecting to a Slow Manifold: Singularly Perturbed Systems and Legacy Codes , 2005, SIAM J. Appl. Dyn. Syst..
[17] Lars Folke Olsen,et al. An enzyme reaction with a strange attractor , 1983 .
[18] Martin Wechselberger,et al. Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..
[19] T. Erneux,et al. Bifurcation phenomena in a laser with saturable absorber I , 1981 .
[20] N. Rashevsky,et al. Mathematical biology , 1961, Connecticut medicine.
[21] John Guckenheimer,et al. Canards at Folded Nodes , 2005 .
[22] John Guckenheimer,et al. Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System , 2010, SIAM J. Appl. Dyn. Syst..
[23] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[24] K. Nipp. Numerical integration of stiff ODE's of singular perturbation type , 1991 .
[25] Simon J. Fraser,et al. The steady state and equilibrium approximations: A geometrical picture , 1988 .
[26] J. Lambert. Numerical Methods for Ordinary Differential Equations , 1991 .
[27] Jacques Vanneste,et al. Asymptotics of a Slow Manifold , 2008, SIAM J. Appl. Dyn. Syst..
[28] Marina Bosch,et al. Applications Of Centre Manifold Theory , 2016 .
[29] Hans G. Kaper,et al. Fast and Slow Dynamics for the Computational Singular Perturbation Method , 2004, Multiscale Model. Simul..
[30] Thomas F. Fairgrieve,et al. AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .
[31] V. Gelfreich,et al. Almost invariant elliptic manifold in a singularly perturbed Hamiltonian system , 2002 .
[32] É. Benoît. Chasse au canard , 1980 .
[33] B. Krauskopf,et al. Self-pulsations of lasers with saturable absorber: dynamics and bifurcations , 1999 .
[34] Eve Marder,et al. Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks , 1994, Journal of Computational Neuroscience.
[35] D. Turaev,et al. The symmetric parabolic resonance , 2010 .
[36] I. G. Kevrekidis,et al. Esaim: Mathematical Modelling and Numerical Analysis Analysis of the Accuracy and Convergence of Equation-free Projection to a Slow Manifold , 2022 .
[37] John Guckenheimer,et al. Numerical Computation of Canards , 2000, Int. J. Bifurc. Chaos.
[38] K. Uldall Kristiansen,et al. The Persistence of a Slow Manifold with Bifurcation , 2012, SIAM J. Appl. Dyn. Syst..
[39] Natalia Kopteva,et al. Shishkin meshes in the numerical solution of singularly perturbed differential equations , 2010 .
[40] J. Laskar. Large-scale chaos in the solar system. , 1994 .
[41] Michael R. Osborne,et al. Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.
[42] James Sneyd,et al. Dynamical Probing of the Mechanisms Underlying Calcium Oscillations , 2006, J. Nonlinear Sci..
[43] C. W. Gear,et al. Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .
[44] Thomas Erneux. Q-switching bifurcation in a laser with a saturable absorber , 1988 .
[45] S. H. Lam,et al. Using CSP to Understand Complex Chemical Kinetics ∗ , 1992 .
[46] S. H. Lam,et al. Understanding complex chemical kinetics with computational singular perturbation , 1989 .
[47] Klaus Kirchgässner,et al. A theory of solitary water-waves in the presence of surface tension , 1989 .
[48] V. Arnold,et al. Mathematical aspects of classical and celestial mechanics , 1997 .
[49] J. Callot,et al. Chasse au canard , 1977 .
[50] John Guckenheimer,et al. Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..
[51] Inertial manifolds , 1990 .
[52] Bernd Krauskopf,et al. Numerical continuation of canard orbits in slow–fast dynamical systems , 2010 .
[53] J. Laskar,et al. Existence of collisional trajectories of Mercury, Mars and Venus with the Earth , 2009, Nature.
[54] T. Erneux,et al. Bifurcation phenomena in a laser with saturable absorber. II , 1981 .
[55] John Guckenheimer,et al. The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..
[56] J. Guckenheimer,et al. HOMOCLINIC ORBITS OF THE FITZHUGH-NAGUMO EQUATION: THE SINGULAR-LIMIT , 2009, 1201.5901.
[57] R. Bellman. The stability of solutions of linear differential equations , 1943 .
[58] M. Brøns. Canard explosion of limit cycles in templator models of self-replication mechanisms. , 2011, The Journal of chemical physics.
[59] Xiao-Jing Wang,et al. Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons , 1992, Neural Computation.
[60] L. Lerman,et al. Solitary wave solutions of nonlocal sine-Gordon equations. , 1998, Chaos.
[61] Bernd Krauskopf,et al. Solving Winfree's puzzle: the isochrons in the FitzHugh-Nagumo model. , 2014, Chaos.
[62] Marc R. Roussel,et al. Geometry of the steady-state approximation: Perturbation and accelerated convergence methods , 1990 .
[63] K. Uldall Kristiansen,et al. A Unification of Models of Tethered Satellites , 2011, SIAM J. Appl. Dyn. Syst..
[64] Hans G. Kaper,et al. Asymptotic analysis of two reduction methods for systems of chemical reactions , 2002 .
[65] Michael Reinhard,et al. Physical Chemistry A Molecular Approach , 2016 .
[66] B. Sandstede,et al. Fast and Slow Waves in the FitzHugh–Nagumo Equation , 1997 .
[67] Ulrich Maas,et al. Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .
[68] J. Rubin,et al. Geometric Singular Perturbation Analysis of Neuronal Dynamics , 2002 .
[69] Jonathan E. Rubin,et al. Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model , 2007, Biological Cybernetics.
[70] K. U. Kristiansen,et al. On the approximation of the canard explosion point in epsilon-free systems , 2015, 1504.07752.