In this paper, we present an approach for increasing service availability in intelligent video surveillance systems (IVS). A typical IVS system consists of various intelligent video sensors that combine image sensing with video analysis and network streaming. System monitoring and fault diagnosis followed by appropriate system reconfiguration mitigate effects of faults and therefore enhance the system’s fault tolerance. The applied monitoring and diagnosis unit (MDU) allows the detection of both nodeand system-level faults. Lacking redundant hardware such reconfigurations are established by graceful degradation of the overall application. Multi-objective optimization is used to compute a new degraded system configuration by trading off quality of service (QoS), energy consumption, and service availability. We demonstrate our approach by typical scenarios in an IVS-system that necessitates reconfiguration. Kurzfassung – In dieser Arbeit wird ein Ansatz zur Verbesserung der Dienstverfügbarkeit in intelligenten Videoüberwachungssystemen (IVS) präsentiert. Ein IVSSystem besteht typischerweise aus mehreren intelligenten Videokameras die Szenen aufnehmen und diese Daten analysieren und über ein Netzwerk versenden. Ein Monitoring mit daran gekoppelter Fehlerdiagnose und entsprechender Rekonfiguration verbessert die Fehlertoleranz des gesamten Systems. Die verwendete Monitoring und Diagnose Einheit (MDU) ermöglicht das Erkennen von sowohl Systemals auch Knoten-bezogener Fehlfunktionen. Bei nicht redundanter Hardware wird die Rekonfiguration durch angemessene Verringerung der Gesamtqualität im System erreicht. Die Verringerung wird im Detail durch optimierten Trade-off von Quality of Service (QoS), Energieverbrauch und Dienstverfügbarkeit bestimmt. Der Ansatz wird anhand eines typischen IVS-Szenarios das Reconfiguration nötig macht näher verdeutlicht.
[1]
F. Ashcroft,et al.
VIII. References
,
1955
.
[2]
Sudhakar M. Reddy,et al.
FAULT-DIAGNOSIS IN FULLY DISTRIBUTED SYSTEMS
,
1995,
Twenty-Fifth International Symposium on Fault-Tolerant Computing, 1995, ' Highlights from Twenty-Five Years'..
[3]
Enrico Magli,et al.
Energy consumption and image quality in wireless video-surveillance networks
,
2002,
The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.
[4]
Jeffrey O. Kephart,et al.
The Vision of Autonomic Computing
,
2003,
Computer.
[5]
Priya Narasimhan,et al.
A Middleware for Dependable Distributed Real-Time Systems
,
2003
.
[6]
Lars Lundberg,et al.
Recovery schemes for high availability and high performance distributed real-time computing
,
2003,
Proceedings International Parallel and Distributed Processing Symposium.
[7]
Ying Zhang,et al.
Energy-aware adaptive checkpointing in embedded real-time systems
,
2003,
2003 Design, Automation and Test in Europe Conference and Exhibition.
[8]
Bernhard Rinner,et al.
Combined Management of Power-and Quality of Service in Distributed Embedded Video Surveillance Systems
,
2004
.
[9]
Israel Koren,et al.
Application-Level Fault Tolerance as a Complement to System-Level Fault Tolerance
,
2000,
The Journal of Supercomputing.
[10]
Douglas M. Blough,et al.
Distributed diagnosis in dynamic fault environments
,
2004,
IEEE Transactions on Parallel and Distributed Systems.
[11]
António de Sousa.
Smart Cameras in Embedded Systems
,
2020
.