User Group Analytics Survey and Research Opportunities

User data can be acquired from various domains and is characterized by a combination of demographics such as age and occupation, and user actions such as rating a movie or recording one's blood pressure. User data is appealing to analysts in their role as data scientists who seek to conduct large-scale population studies, and gain insights on various population segments. It is also appealing to users in their role as information consumers who use the social Web for routine tasks such as finding a book club or choosing a physical activity. User data analytics usually relies on identifying group-level behaviors such as “Asian women who publish regularly in databases”. Group analytics addresses peculiarities of user data such as noise and sparsity to enable insights. In this survey, we discuss different approaches for each component of user group analytics, i.e., discovery, exploration, and visualization. We focus on related work which arises from combining those components. We also discuss challenges and future directions of having an all-in-one system, where all those components are combined. This survey has been presented in the form of two tutorials [1] , [2].

[1]  Kai Lawonn,et al.  3D Regression Heat Map Analysis of Population Study Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[2]  Arnab Nandi,et al.  Distributed and interactive cube exploration , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[3]  Luis Carlos Erpen De Bona,et al.  Cubrick: Indexing Millions of Records per Second for Interactive Analytics , 2016, Proc. VLDB Endow..

[4]  David Gotz,et al.  DecisionFlow: Visual Analytics for High-Dimensional Temporal Event Sequence Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[5]  Jiawei Han,et al.  Urbanity: A System for Interactive Exploration of Urban Dynamics from Streaming Human Sensing Data , 2017, CIKM.

[6]  Jeffrey Heer,et al.  Profiler: integrated statistical analysis and visualization for data quality assessment , 2012, AVI.

[7]  Venu Govindaraju,et al.  Engagement Capacity and Engaging Team Formation for Reach Maximization of Online Social Media Platforms , 2016, KDD.

[8]  Ben Shneiderman,et al.  A Task Taxonomy for Network Evolution Analysis , 2014, IEEE Transactions on Visualization and Computer Graphics.

[9]  Sihem Amer-Yahia,et al.  User Group Analytics: Discovery, Exploration and Visualization , 2018, CIKM.

[10]  Joseph M. Hellerstein,et al.  Data Tweening: Incremental Visualization of Data Transforms , 2017, Proc. VLDB Endow..

[11]  Alexandre Termier,et al.  TopPI: An efficient algorithm for item-centric mining , 2017, Inf. Syst..

[12]  John T. Stasko,et al.  Interactive Browsing and Navigation in Relational Databases , 2016, Proc. VLDB Endow..

[13]  Dan Suciu,et al.  A formal approach to finding explanations for database queries , 2014, SIGMOD Conference.

[14]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[15]  Snehasis Mukhopadhyay,et al.  Interactive pattern mining on hidden data: a sampling-based solution , 2012, CIKM.

[16]  H. Levkowitz,et al.  Coordinated views to assist exploration of spatio-temporal data: a case study , 2004, Proceedings. Second International Conference on Coordinated and Multiple Views in Exploratory Visualization, 2004..

[17]  Ben Shneiderman,et al.  Finding Similar People to Guide Life Choices: Challenge, Design, and Evaluation , 2017, CHI.

[18]  Melanie Tory,et al.  Visualizing Dimension Coverage to Support Exploratory Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.

[19]  Yi Yang,et al.  Diversified Temporal Subgraph Pattern Mining , 2016, KDD.

[20]  Tim Kraska,et al.  How Progressive Visualizations Affect Exploratory Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.

[21]  Arnab Nandi,et al.  Evaluating Interactive Data Systems: Workloads, Metrics, and Guidelines , 2018, SIGMOD Conference.

[22]  Siddharth Suri,et al.  Conducting behavioral research on Amazon’s Mechanical Turk , 2010, Behavior research methods.

[23]  Jeffrey Heer,et al.  The Effects of Interactive Latency on Exploratory Visual Analysis , 2014, IEEE Transactions on Visualization and Computer Graphics.

[24]  Sihem Amer-Yahia,et al.  Testing Interestingness Measures in Practice: A Large-Scale Analysis of Buying Patterns , 2016, 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[25]  Sihem Amer-Yahia,et al.  Online Lattice-Based Abstraction of User Groups , 2017, DEXA.

[26]  Raymond Chi-Wing Wong,et al.  Efficient skyline querying with variable user preferences on nominal attributes , 2008, Proc. VLDB Endow..

[27]  Keith S. Karn,et al.  Commentary on Section 4. Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. , 2003 .

[28]  K. Selçuk Candan,et al.  How Does the Data Sampling Strategy Impact the Discovery of Information Diffusion in Social Media? , 2010, ICWSM.

[29]  Laks V. S. Lakshmanan,et al.  Incremental cluster evolution tracking from highly dynamic network data , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[30]  Tarek Elgamal,et al.  sPCA: Scalable Principal Component Analysis for Big Data on Distributed Platforms , 2015, SIGMOD Conference.

[31]  Andrei Z. Broder,et al.  Anatomy of the long tail: ordinary people with extraordinary tastes , 2010, WSDM '10.

[32]  Jeffrey Heer,et al.  Scented Widgets: Improving Navigation Cues with Embedded Visualizations , 2007, IEEE Transactions on Visualization and Computer Graphics.

[33]  Sihem Amer-Yahia,et al.  Data Pipelines for User Group Analytics , 2019, SIGMOD Conference.

[34]  Sebastian Michel,et al.  Reverse Engineering Top-k Database Queries with PALEO , 2016, EDBT.

[35]  Jae-Gil Lee,et al.  Community Detection in Multi-Layer Graphs: A Survey , 2015, SGMD.

[36]  Sihem Amer-Yahia,et al.  Health Monitoring on Social Media over Time , 2016, IEEE Transactions on Knowledge and Data Engineering.

[37]  David H. Laidlaw,et al.  The relation between visualization size, grouping, and user performance , 2014, IEEE Transactions on Visualization and Computer Graphics.

[38]  F. Maxwell Harper,et al.  The MovieLens Datasets: History and Context , 2016, TIIS.

[39]  Heidrun Schumann,et al.  A Modular Degree-of-Interest Specification for the Visual Analysis of Large Dynamic Networks , 2014, IEEE Transactions on Visualization and Computer Graphics.

[40]  Ben Shneiderman,et al.  Temporal Event Sequence Simplification , 2013, IEEE Transactions on Visualization and Computer Graphics.

[41]  Vikram Pudi,et al.  A feature-pair-based associative classification approach to look-alike modeling for conversion-oriented user-targeting in tail campaigns , 2011, WWW.

[42]  Jeffrey Heer,et al.  imMens: Real‐time Visual Querying of Big Data , 2013, Comput. Graph. Forum.

[43]  Shuigeng Zhou,et al.  PRAGUE: Towards Blending Practical Visual Subgraph Query Formulation and Query Processing , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[44]  Fei Wang,et al.  Patient Subtyping via Time-Aware LSTM Networks , 2017, KDD.

[45]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[46]  Josua Krause,et al.  Supporting Iterative Cohort Construction with Visual Temporal Queries , 2016, IEEE Transactions on Visualization and Computer Graphics.

[47]  Natalie Kerracher,et al.  A Task Taxonomy for Temporal Graph Visualisation , 2015, IEEE Transactions on Visualization and Computer Graphics.

[48]  Cong Yu,et al.  MRI: Meaningful Interpretations of Collaborative Ratings , 2011, Proc. VLDB Endow..

[49]  Sean M. McNee,et al.  Improving recommendation lists through topic diversification , 2005, WWW '05.

[50]  Sihem Amer-Yahia,et al.  A Survey of General-Purpose Crowdsourcing Techniques , 2016, IEEE Transactions on Knowledge and Data Engineering.

[51]  BronCoen,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[52]  Evangelia Christakopoulou,et al.  Identifying Decision Makers from Professional Social Networks , 2016, KDD.

[53]  Carsten Binnig,et al.  Evaluating Visual Data Analysis Systems: A Discussion Report , 2018, HILDA@SIGMOD.

[54]  Carlos Eduardo Scheidegger,et al.  Nanocubes for Real-Time Exploration of Spatiotemporal Datasets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[55]  Mira Dontcheva,et al.  CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences , 2017, Comput. Graph. Forum.

[56]  Dino Pedreschi,et al.  ExAnte: Anticipated Data Reduction in Constrained Pattern Mining , 2003, PKDD.

[57]  Jiawei Han,et al.  Discovering interesting patterns through user's interactive feedback , 2006, KDD '06.

[58]  Salvatore Orlando,et al.  ConQueSt: a Constraint-based Querying System for Exploratory Pattern Discovery , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[59]  Ye Zhao,et al.  TenniVis: Visualization for Tennis Match Analysis , 2014, IEEE Transactions on Visualization and Computer Graphics.

[60]  Xiaodong Li,et al.  Effective Community Search over Large Spatial Graphs , 2017, Proc. VLDB Endow..

[61]  Longbing Cao Behavior Informatics to Discover Behavior Insight for Active and Tailored Client Management , 2017, KDD.

[62]  Eugene Wu sirrice The Case for Data Visualization Management Systems [ Vision Paper ] , 2014 .

[63]  Filip Sadlo,et al.  Visual soccer match analysis using spatiotemporal positions of players , 2017, Comput. Graph..

[64]  Jarke J. van Wijk,et al.  Reducing Snapshots to Points: A Visual Analytics Approach to Dynamic Network Exploration , 2016, IEEE Transactions on Visualization and Computer Graphics.

[65]  Ming-Syan Chen,et al.  On Social-Temporal Group Query with Acquaintance Constraint , 2011, Proc. VLDB Endow..

[66]  Quanzhong Li,et al.  SEDA: a system for search, exploration, discovery, and analysis of XML Data , 2008, Proc. VLDB Endow..

[67]  Hui Xiong,et al.  To be or Not to be Friends: Exploiting Social Ties for Venture Investments , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[68]  Sihem Amer-Yahia,et al.  Exploration of User Groups in VEXUS , 2017, 2018 IEEE 34th International Conference on Data Engineering (ICDE).

[69]  H. V. Jagadish,et al.  Skimmer: rapid scrolling of relational query results , 2012, SIGMOD Conference.

[70]  Kwan-Liu Ma,et al.  Visual cluster exploration of web clickstream data , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[71]  Andreas Dengel,et al.  Attentive documents: Eye tracking as implicit feedback for information retrieval and beyond , 2012, TIIS.

[72]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[73]  Evangelos E. Milios,et al.  LogView: Visualizing Event Log Clusters , 2008, 2008 Sixth Annual Conference on Privacy, Security and Trust.

[74]  Themis Palpanas,et al.  New Trends on Exploratory Methods for Data Analytics , 2017, Proc. VLDB Endow..

[75]  Anthony K. H. Tung,et al.  Cohort Query Processing , 2016, Proc. VLDB Endow..

[76]  Chunyan Miao,et al.  Towards Best Region Search for Data Exploration , 2016, SIGMOD Conference.

[77]  Martin Halvey,et al.  An assessment of tag presentation techniques , 2007, WWW '07.

[78]  Yuanzhe Chen,et al.  Sequence Synopsis: Optimize Visual Summary of Temporal Event Data , 2018, IEEE Transactions on Visualization and Computer Graphics.

[79]  Aristides Gionis,et al.  The community-search problem and how to plan a successful cocktail party , 2010, KDD.

[80]  Jure Leskovec,et al.  Automatic Versus Human Navigation in Information Networks , 2012, ICWSM.

[81]  Aniket Kittur,et al.  Crowdsourcing user studies with Mechanical Turk , 2008, CHI.

[82]  Alexandre Termier,et al.  Interactive User Group Analysis , 2015, CIKM.

[83]  Olga Papaemmanouil,et al.  AIDE: An Active Learning-Based Approach for Interactive Data Exploration , 2016, IEEE Transactions on Knowledge and Data Engineering.

[84]  Jean-Daniel Fekete,et al.  Interactive information visualization of a million items , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[85]  Laks V. S. Lakshmanan,et al.  Exploring Rated Datasets with Rating Maps , 2017, WWW.

[86]  Steve Harenberg,et al.  Community detection in large‐scale networks: a survey and empirical evaluation , 2014 .

[87]  Behrooz Omidvar-Tehrani,et al.  GeoGuide: An Interactive Guidance Approach for Spatial Data , 2017, 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).

[88]  Sung-Hee Kim,et al.  VisOHC: Designing Visual Analytics for Online Health Communities , 2016, IEEE Transactions on Visualization and Computer Graphics.

[89]  Howard J. Hamilton,et al.  Interestingness measures for data mining: A survey , 2006, CSUR.

[90]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[91]  Carsten Binnig,et al.  IDEBench: A Benchmark for Interactive Data Exploration , 2018, SIGMOD Conference.

[92]  Carsten Binnig,et al.  Controlling False Discoveries During Interactive Data Exploration , 2016, SIGMOD Conference.

[93]  Alex Endert,et al.  Visualization by Demonstration: An Interaction Paradigm for Visual Data Exploration , 2017, IEEE Transactions on Visualization and Computer Graphics.

[94]  Jiawei Han,et al.  CloseGraph: mining closed frequent graph patterns , 2003, KDD '03.

[95]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[96]  Cláudio T. Silva,et al.  VisTrails: visualization meets data management , 2006, SIGMOD Conference.

[97]  Jure Leskovec,et al.  Finding progression stages in time-evolving event sequences , 2014, WWW.

[98]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[99]  Anshul Vikram Pandey,et al.  TextTile: An Interactive Visualization Tool for Seamless Exploratory Analysis of Structured Data and Unstructured Text , 2017, IEEE Transactions on Visualization and Computer Graphics.

[100]  J. B. Kruskal,et al.  Icicle Plots: Better Displays for Hierarchical Clustering , 1983 .

[101]  Kai Huang,et al.  C-Explorer: Browsing Communities in Large Graphs , 2017, Proc. VLDB Endow..

[102]  I. Jolliffe Mathematical and Statistical Properties of Population Principal Components , 1986 .

[103]  Mark Newman,et al.  Detecting community structure in networks , 2004 .

[104]  Kai Lawonn,et al.  Interactive Visual Analysis of Image-Centric Cohort Study Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[105]  Hongzhi Wang,et al.  Effective and Efficient Community Search Over Large Directed Graphs , 2019, IEEE Transactions on Knowledge and Data Engineering.

[106]  Gediminas Adomavicius,et al.  Context-aware recommender systems , 2008, RecSys '08.

[107]  Andrew J. Cowell,et al.  Automatically Identifying Groups Based on Content and Collective Behavioral Patterns of Group Members , 2011, ICWSM.

[108]  Haopeng Zhang,et al.  EXstream: Explaining Anomalies in Event Stream Monitoring , 2017, EDBT.

[109]  Jesus J. Caban,et al.  A Grammar-based Approach for Modeling User Interactions and Generating Suggestions During the Data Exploration Process , 2017, IEEE Transactions on Visualization and Computer Graphics.

[110]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[111]  Pauli Miettinen,et al.  Interactive redescription mining , 2014, SIGMOD Conference.

[112]  Peter J. Haas,et al.  Foresight: Recommending Visual Insights , 2017, Proc. VLDB Endow..

[113]  Sihem Amer-Yahia,et al.  UserDEV: A Mixed-Initiative System for User Group Analytics , 2019, HILDA@SIGMOD.

[114]  Michael J. Cafarella,et al.  Visualization-aware sampling for very large databases , 2015, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[115]  Christopher Ré,et al.  The HoloClean Framework Dataset to be cleaned Denial Constraints External Information t 1 t 4 t 2 t 3 Johnnyo ’ s , 2017 .

[116]  Jack Minker,et al.  On Indefinite Databases and the Closed World Assumption , 1987, CADE.

[117]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[118]  Jian Pei,et al.  Finding Pareto Optimal Groups: Group-based Skyline , 2015, Proc. VLDB Endow..

[119]  Pat Hanrahan,et al.  Show Me: Automatic Presentation for Visual Analysis , 2007, IEEE Transactions on Visualization and Computer Graphics.

[120]  Jeff Gavin,et al.  Getting Acquainted with Groups and Individuals: Information Seeking, Social Uncertainty and Social Network Sites , 2013, ICWSM.

[121]  Bamshad Mobasher,et al.  Adapting to User Preference Changes in Interactive Recommendation , 2015, IJCAI.

[122]  Carsten Binnig,et al.  Towards a Benchmark for Interactive Data Exploration , 2016, IEEE Data Eng. Bull..

[123]  Padhraic Smyth,et al.  Model-Based Clustering and Visualization of Navigation Patterns on a Web Site , 2003, Data Mining and Knowledge Discovery.

[124]  Yang Wang,et al.  Patterns and Sequences: Interactive Exploration of Clickstreams to Understand Common Visitor Paths , 2017, IEEE Transactions on Visualization and Computer Graphics.

[125]  Samuel Madden,et al.  Scorpion: Explaining Away Outliers in Aggregate Queries , 2013, Proc. VLDB Endow..

[126]  Tova Milo,et al.  Next-Step Suggestions for Modern Interactive Data Analysis Platforms , 2018, KDD.

[127]  D. Polkinghorne Language and meaning: Data collection in qualitative research. , 2005 .

[128]  Michel Crampes,et al.  Survey on Social Community Detection , 2013, Social Media Retrieval.

[129]  J. Stasko,et al.  Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[130]  Dan Suciu,et al.  Explaining Query Answers with Explanation-Ready Databases , 2015, Proc. VLDB Endow..

[131]  Hassan Chafi,et al.  The LDBC Social Network Benchmark: Interactive Workload , 2015, SIGMOD Conference.

[132]  Kai Huang,et al.  PICASSO: Exploratory Search of Connected Subgraph Substructures in Graph Databases , 2017, Proc. VLDB Endow..

[133]  Sihem Amer-Yahia,et al.  Group Recommendation with Temporal Affinities , 2015, EDBT.

[134]  Wei Chen,et al.  ExRank: An Exploratory Ranking Interface , 2016, Proc. VLDB Endow..

[135]  Tamara Munzner,et al.  A Nested Model for Visualization Design and Validation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[136]  Mohamed A. Sharaf,et al.  MuVE: Efficient Multi-Objective View Recommendation for Visual Data Exploration , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[137]  Emanuel Zgraggen,et al.  PanoramicData: Data Analysis through Pen & Touch , 2014, IEEE Transactions on Visualization and Computer Graphics.

[138]  Andreas Hotho,et al.  Mining Subgroups with Exceptional Transition Behavior , 2016, KDD.

[139]  Martin Wattenberg,et al.  Parallel Tag Clouds to explore and analyze faceted text corpora , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[140]  Kian-Lee Tan,et al.  Discovering Your Selling Points: Personalized Social Influential Tags Exploration , 2017, SIGMOD Conference.

[141]  Aditya G. Parameswaran,et al.  SeeDB: Efficient Data-Driven Visualization Recommendations to Support Visual Analytics , 2015, Proc. VLDB Endow..

[142]  Thomas Ertl,et al.  VA2: A Visual Analytics Approach for Evaluating Visual Analytics Applications , 2016, IEEE Transactions on Visualization and Computer Graphics.

[143]  Oded Nov,et al.  The Persuasive Power of Data Visualization , 2014, IEEE Transactions on Visualization and Computer Graphics.

[144]  Timos K. Sellis,et al.  graphVizdb: A scalable platform for interactive large graph visualization , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[145]  George Valkanas,et al.  Understanding Within-Content Engagement through Pattern Analysis of Mouse Gestures , 2014, CIKM.

[146]  Laks V. S. Lakshmanan,et al.  Discovering leaders from community actions , 2008, CIKM '08.

[147]  Jure Leskovec,et al.  Empirical comparison of algorithms for network community detection , 2010, WWW '10.

[148]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[149]  Giuseppe Carenini,et al.  ConVis: A Visual Text Analytic System for Exploring Blog Conversations , 2014, Comput. Graph. Forum.

[150]  Danai Koutra,et al.  Perseus: An Interactive Large-Scale Graph Mining and Visualization Tool , 2015, Proc. VLDB Endow..

[151]  John Lee,et al.  Effortless Data Exploration with zenvisage: An Expressive and Interactive Visual Analytics System , 2016, Proc. VLDB Endow..

[152]  Stefan Wrobel,et al.  One click mining: interactive local pattern discovery through implicit preference and performance learning , 2013, IDEA@KDD.

[153]  M H Fischer,et al.  An Investigation of Attention Allocation during Sequential Eye Movement Tasks , 1999, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[154]  Christos Faloutsos,et al.  Come-and-Go Patterns of Group Evolution: A Dynamic Model , 2016, KDD.

[155]  Reynold Cheng,et al.  Effective Community Search for Large Attributed Graphs , 2016, Proc. VLDB Endow..

[156]  Sihem Amer-Yahia,et al.  Multi-Objective Group Discovery on the Social Web , 2016, ECML/PKDD.

[157]  Chris Stolte Visual interfaces to data , 2010, SIGMOD Conference.

[158]  Lidan Shou,et al.  FlashView: An Interactive Visual Explorer for Raw Data , 2017, Proc. VLDB Endow..

[159]  Cláudio T. Silva,et al.  Visual analysis of bike-sharing systems , 2016, Comput. Graph..

[160]  H. V. Jagadish,et al.  Guided Interaction: Rethinking the Query-Result Paradigm , 2011, Proc. VLDB Endow..

[161]  Gautam Das,et al.  Facetedpedia: enabling query-dependent faceted search for wikipedia , 2010, CIKM '10.

[162]  Carlos Eduardo Scheidegger,et al.  Hashedcubes: Simple, Low Memory, Real-Time Visual Exploration of Big Data , 2017, IEEE Transactions on Visualization and Computer Graphics.

[163]  Hector Garcia-Molina,et al.  CrowdDQS: Dynamic Question Selection in Crowdsourcing Systems , 2017, SIGMOD Conference.

[164]  Surajit Chaudhuri,et al.  Overview of Data Exploration Techniques , 2015, SIGMOD Conference.

[165]  Ali Pinar,et al.  Fast Hierarchy Construction for Dense Subgraphs , 2016, Proc. VLDB Endow..

[166]  Thierry Bertin-Mahieux,et al.  The Million Song Dataset , 2011, ISMIR.

[167]  Chih-Ya Shen,et al.  On Finding Socially Tenuous Groups for Online Social Networks , 2017, KDD.

[168]  Volker Markl,et al.  Faster Visual Analytics through Pixel-Perfect Aggregation , 2014, Proc. VLDB Endow..

[169]  Zhen Li,et al.  CloudVista: Interactive and Economical Visual Cluster Analysis for Big Data in the Cloud , 2012, Proc. VLDB Endow..

[170]  Laure Soulier,et al.  Answering Twitter Questions: a Model for Recommending Answerers through Social Collaboration , 2016, CIKM.

[171]  Arvind Satyanarayan,et al.  Vega-Lite: A Grammar of Interactive Graphics , 2018, IEEE Transactions on Visualization and Computer Graphics.

[172]  Jian Zhao,et al.  Interactive Exploration of Implicit and Explicit Relations in Faceted Datasets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[173]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..

[174]  Theodoros Lappas,et al.  SOFIA SEARCH: a tool for automating related-work search , 2012, SIGMOD Conference.

[175]  Catherine Plaisant,et al.  NetLens: Iterative Exploration of Content-Actor Network Data , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[176]  Gang Wang,et al.  Unsupervised Clickstream Clustering for User Behavior Analysis , 2016, CHI.