A two-mesh adaptive mesh refinement technique for SN neutral-particle transport using a higher-order DGFEM

We present a two-mesh Adaptive Mesh Refinement technique for the S"N neutral-particle transport equation in 2D. A high-order (up to order 4) Discontinuous Galerkin (DG) finite element discretization is employed with standard upwinding. A suitable Diffusion Synthetic Acceleration (DSA) scheme is derived to precondition the transport solves. The DSA scheme, also based on a DG discretization, is derived directly from the discretized high-order DG S"N transport equation. Results are presented to demonstrate the superiority of AMR for DSA-accelerated S"N transport solves.

[1]  Marvin L. Adams,et al.  Diffusion Synthetic Acceleration of Discontinuous Finite Element Transport Iterations , 1992 .

[2]  Jim E. Morel,et al.  Krylov Iterative Methods and the Degraded Effectiveness of Diffusion Synthetic Acceleration for Multidimensional SN Calculations in Problems with Material Discontinuities , 2004 .

[3]  Edward W. Larsen,et al.  UNCONDITIONALLY STABLE DIFFUSION-SYNTHETIC ACCELERATION METHODS FOR THE SLAB GEOMETRY DISCRETE ORDINATES EQUATIONS. PART I: THEORY. , 1982 .

[4]  Jim E. Morel,et al.  An Sn Spatial Discretization Scheme for Tetrahedral Meshes , 2005 .

[5]  P. Colella,et al.  An Adaptive Mesh Refinement Algorithm for the Radiative Transport Equation , 1998 .

[6]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[7]  V. Gregory Weirs,et al.  Adaptive Mesh Refinement - Theory and Applications , 2008 .

[8]  Leszek Demkowicz,et al.  Goal-oriented hp-adaptivity for elliptic problems , 2004 .

[9]  Randal S. Baker,et al.  A Diffusion Synthetic Acceleration Method for Block Adaptive Mesh Refinement , 2006 .

[10]  Yaqi Wang Adaptive mesh refinement solution techniques for the multigroup SN transport equation using a higher-order discontinuous finite element method , 2010 .

[11]  Edward W. Larsen,et al.  Fast iterative methods for discrete-ordinates particle transport calculations , 2002 .

[12]  Ludmil Zikatanov,et al.  A posteriori error estimator and AMR for discrete ordinates nodal transport methods , 2009 .

[13]  E. Ramm,et al.  Error-controlled Adaptive Finite Elements in Solid Mechanics , 2001 .

[14]  Francisco Ogando,et al.  Development of a radiation transport fluid dynamic code under AMR scheme , 2001 .

[15]  Guido Kanschat,et al.  Radiative transfer with finite elements. I. Basic method and tests , 2001 .

[16]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[17]  Jean C. Ragusa,et al.  A high-order discontinuous Galerkin method for the SN transport equations on 2D unstructured triangular meshes , 2009 .

[18]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[19]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[20]  R. M. Shagaliev,et al.  Different Algorithms of 2D Transport Equation Parallelization on Random Non-Orthogonal Grids , 2006 .

[21]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[22]  R. E. Alcouffe,et al.  Diffusion synthetic acceleration methods for the diamond-differenced discrete-ordinates equations , 1977 .

[23]  Wolfgang Bangerth,et al.  Three-dimensional h-adaptivity for the multigroup neutron diffusion equations , 2009 .