Computational studies of DNA sequencing with solid-state nanopores: key issues and future prospects

Owing to the potential use for real personalized genome sequencing, DNA sequencing with solid-state nanopores has been investigated intensively in recent time. However, the area still confronts problems and challenges. In this work, we present a brief overview of computational studies of key issues in DNA sequencing with solid-state nanopores by addressing the progress made in the last few years. We also highlight future challenges and prospects for DNA sequencing using this technology.

[1]  Qi Wang,et al.  Theoretical study on key factors in DNA sequencing with graphene nanopores , 2013 .

[2]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[3]  Peter Reimann,et al.  On the Lubensky-Nelson model of polymer translocation through nanopores. , 2012, Biophysical journal.

[4]  Gianaurelio Cuniberti,et al.  Dynamic and electronic transport properties of DNA translocation through graphene nanopores. , 2013, Nano letters.

[5]  Gustavo Stolovitzky,et al.  Slowing and controlling the translocation of DNA in a solid-state nanopore. , 2012, Nanoscale.

[6]  A. Kasarskis,et al.  A window into third-generation sequencing. , 2010, Human molecular genetics.

[7]  Cees Dekker,et al.  Measurement of the docking time of a DNA molecule onto a solid-state nanopore. , 2012, Nano letters.

[8]  Bo Zhang,et al.  Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. , 2010, Nano letters.

[9]  R. Keller,et al.  Single-molecule detection as an approach to rapid DNA sequencing. , 1992, Trends in biotechnology.

[10]  S. Ghosal Effect of salt concentration on the electrophoretic speed of a polyelectrolyte through a nanopore. , 2007, Physical review letters.

[11]  Sun Weimin,et al.  Dependence of zeta potential on polyelectrolyte moving through a solid-state nanopore , 2009 .

[12]  Jacob J. Schmidt,et al.  Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore. , 2009, ACS nano.

[13]  Gustavo Stolovitzky,et al.  Tribological effects on DNA translocation in a nanochannel coated with a self-assembled monolayer. , 2010, The journal of physical chemistry. B.

[14]  M. Niederweis,et al.  Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase , 2012, Nature Biotechnology.

[15]  Nicholas N. Watkins,et al.  Highly Sensitive, Mechanically Stable Nanopore Sensors for DNA Analysis , 2009, Advanced materials.

[16]  H. Postma,et al.  Rapid sequencing of individual DNA molecules in graphene nanogaps. , 2008, Nano letters.

[17]  Ruhong Zhou,et al.  Dynamics of DNA translocation in a solid-state nanopore immersed in aqueous glycerol , 2012, Nanotechnology.

[18]  D. McNabb,et al.  Slowing DNA translocation in a solid-state nanopore. , 2005, Nano letters.

[19]  Aleksei Aksimentiev,et al.  Electro-osmotic screening of the DNA charge in a nanopore. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Dimitrios H Roukos,et al.  From next-generation sequencing to nanopore sequencing technology: paving the way to personalized genomic medicine , 2013, Expert review of medical devices.

[21]  빅터 리아미체브,et al.  Detection of nucleic acids , 2007 .

[22]  Aleksei Aksimentiev,et al.  Slowing down DNA translocation through a nanopore in lithium chloride. , 2012, Nano letters.

[23]  Makusu Tsutsui,et al.  Thermophoretic manipulation of DNA translocation through nanopores. , 2013, ACS nano.

[24]  K. Schulten,et al.  Microscopic Kinetics of DNA Translocation through synthetic nanopores. , 2004, Biophysical journal.

[25]  A. McCaffrey,et al.  Polymer translocation dynamics in the quasi-static limit. , 2013, The Journal of chemical physics.

[26]  Aleksei Aksimentiev,et al.  Assessing graphene nanopores for sequencing DNA. , 2012, Nano letters.

[27]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[28]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[29]  Mark Akeson,et al.  Automated Forward and Reverse Ratcheting of DNA in a Nanopore at Five Angstrom Precision1 , 2012, Nature Biotechnology.

[30]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[31]  J. Marchini,et al.  Genotype imputation for genome-wide association studies , 2010, Nature Reviews Genetics.

[32]  H. Bayley,et al.  Urea facilitates the translocation of single-stranded DNA and RNA through the alpha-hemolysin nanopore. , 2010, Biophysical journal.

[33]  R. Bashir,et al.  Solid-State Nanopore Sensors for Nucleic Acid Analysis , 2011 .

[34]  D. Branton,et al.  Molecule-hugging graphene nanopores , 2013, Proceedings of the National Academy of Sciences.

[35]  Yongqiang Yang,et al.  Advances in nanopore sequencing technology. , 2013, Journal of nanoscience and nanotechnology.

[36]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. D. Collins,et al.  Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[38]  Jungsuk Kim,et al.  Recent advances in nanopore sequencing , 2012, Electrophoresis.

[39]  D. Lubensky,et al.  Driven polymer translocation through a narrow pore. , 1999, Biophysical journal.

[40]  Shizhi Qian,et al.  DNA Electrokinetic Translocation through a Nanopore: Local Permittivity Environment Effect , 2012 .

[41]  Dmitry Pushkarev,et al.  Single-molecule sequencing of an individual human genome , 2009, Nature Biotechnology.

[42]  Wanlin Guo,et al.  Detecting ssDNA at single-nucleotide resolution by sub-2-nanometer pore in monoatomic graphene: A molecular dynamics study , 2012 .

[43]  M. Burns,et al.  Nanopore sequencing technology: research trends and applications. , 2006, Trends in biotechnology.

[44]  Klaus Schulten,et al.  Computational investigation of DNA detection using graphene nanopores. , 2011, ACS nano.