Operation of liquid-crystal displays for optical computing

We review the operation of both twisted and parallel-aligned nematic liquid-crystal displays (LCD's) for applications in optical computing, image processing, pattern recognition and diffractive optical elements. For these applications, three spatial modulation characteristics are of interest: phase-only, amplitude-only, and combined full amplitude and phase. We review how to achieve these three operating conditions. We begin with a discussion of the Jones matrix model for the twisted-nematic LCD displays. We examine optical configurations for achieving amplitude-only modulation and polarization eigenvectors for achieving phase-only modulation. Then we review an extremely successful technique for obtaining combined full amplitude and phase modulation with a single LCD by spatially modulating the maximum phase depth. Finally we discuss new advances in achieving 2D polarization modulation.

[1]  Josep Nicolas,et al.  Phasor analysis of eigenvectors generated in liquid-crystal displays. , 2002, Applied optics.

[2]  Chii-Maw Uang,et al.  Phase modulation depth for a real-time kinoform using a liquid crystal television , 1993 .

[3]  J. L. Pezzaniti,et al.  Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states. , 1993, Optics letters.

[4]  Jeffrey A. Davis,et al.  Encoding amplitude and phase information onto a binary phase-only spatial light modulator. , 2003, Applied optics.

[5]  Jeffrey A. Davis,et al.  Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators , 1998 .

[6]  F T Yu,et al.  Experimental application of low-cost liquid crystal TV to white-light optical signal processing. , 1986, Applied optics.

[7]  J Campos,et al.  Fully complex synthetic discriminant functions written onto phase-only modulators. , 2000, Applied optics.

[8]  Jeffrey A. Davis,et al.  Polarization eigenstates for twisted-nematic liquid-crystal displays. , 1998, Applied optics.

[9]  Jun Amako,et al.  Computer-Generated Hologram Using TFT Active Matrix Liquid Crystal Spatial Light Modulator (TFT-LCSLM) , 1990 .

[10]  Juan Campos,et al.  Encoding complex diffractive optical elements onto a phase-only liquid-crystal spatial light modulator , 2001 .

[11]  Jean-Pierre Goedgebuer,et al.  Determination of the twist angle and the retardation properties of twisted nematic liquid crystal television by spectral measurements , 1998 .

[12]  Jeffrey A. Davis,et al.  Polarization eigenvectors for reflective twisted nematic liquid crystal displays , 2001 .

[13]  Amnon Yariv,et al.  Optical Waves in Crystals , 1984 .

[14]  M J Yzuel,et al.  Bessel function output from an optical correlator with a phase-only encoded inverse filter. , 1999, Applied optics.

[15]  T. Sonehara,et al.  Kinoform using an electrically controlled birefringent liquid-crystal spatial light modulator. , 1991, Applied optics.

[16]  J. Davis,et al.  Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator. , 2000, Applied optics.

[17]  A Márquez,et al.  Amplitude Apodizers Encoded onto Fresnel Lenses Implemented on a Phase-Only Spatial Light Modulator. , 2001, Applied optics.

[18]  Jun Amako,et al.  Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects , 1999 .

[19]  A. Márquez,et al.  Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model , 2001 .

[20]  Jeffrey A. Davis,et al.  Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators , 1999 .

[21]  Claudio Iemmi,et al.  Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display. , 2004, Applied optics.

[22]  Tomoaki Eiju,et al.  Phase-only modulation using a twisted nematic liquid crystal television. , 1989, Applied optics.

[23]  M Liang,et al.  Approximating fully complex spatial modulation with pseudorandom phase-only modulation. , 1994, Applied optics.

[24]  Y Sheng,et al.  Programmable optical phase-mostly holograms with coupled-mode modulation liquid-crystal television. , 1995, Applied optics.

[25]  Carlos Ferreira,et al.  Twist angle determination in liquid crystal displays by location of local adiabatic points , 1998 .

[26]  Jeffrey A. Davis,et al.  Complex encoding of rotation-invariant filters onto a single phase-only spatial light modulator. , 2003, Applied optics.

[27]  Juan Campos,et al.  Phase and amplitude modulation of elliptic polarization states by nonabsorbing anisotropic elements: application to liquid-crystal devices. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  J Campos,et al.  Fractional derivatives-analysis and experimental implementation. , 2001, Applied optics.

[29]  Y Sheng,et al.  Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions. , 1996, Applied optics.

[30]  Juan Campos,et al.  Effects of Amplitude and Phase Mismatching Errors in the Generation of a Kinoform for Pattern Recognition , 1995 .

[31]  Yunlong Sheng,et al.  Optical on-axis real-time phase-dominant correlator using liquid crystal television , 1993 .

[32]  M. Yzuel,et al.  Encoding amplitude information onto phase-only filters. , 1999, Applied optics.

[33]  D A Gregory,et al.  Real-time pattern recognition using a modified liquid crystal television in a coherent optical correlator. , 1986, Applied optics.

[34]  J. M. de Bougrenet de la Tocnaye,et al.  Complex amplitude modulation by use of liquid-crystal spatial light modulators. , 1997, Applied optics.

[35]  Jeffrey A. Davis,et al.  Simple technique for determining the extraordinary axis direction for twisted-nematic liquid crystal spatial light modulators , 1999 .