Synthesis and Mechanism of Particle- and Flower-Shaped ZnSe Nanocrystals: Green Chemical Approaches toward Green Nanoproducts

A nontoxic, simple, cheap, and reproducible strategy, which meets the standard of green chemistry, is introduced for the synthesis of ZnSe nanoparticles and nanoflowers. The production of these green nanomaterials can be readily scaled up and performed directly at ambient condition without affecting their qualities. The experimental results show that the as-synthesized ZnSe nanoparticles and nanoflowers with a zinc blende structure have a narrow size distribution without resorting to any postsynthetic size-selective procedure. A systematic study of the nanocrystal formation process indicates the following properties. (i) The amount of precursors plays a greater role in the determination of the nanoparticle size than other reaction parameters. Variation of this parameter allows us to tune the nanoparticle size in the high-temperature annealing process. This tunability is interpreted well by the growth kinetics. (ii) The limited ligand protection mechanism cannot be employed to explain the formation of our ...

[1]  N. Pradhan,et al.  Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. , 2007, Journal of the American Chemical Society.

[2]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[3]  A. Dong,et al.  Solution-liquid-solid (SLS) growth of ZnSe-ZnTe quantum wires having axial heterojunctions. , 2007, Nano letters.

[4]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[5]  Andrey L. Rogach,et al.  Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil , 2006 .

[6]  N. Pradhan,et al.  Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis. , 2006, Journal of the American Chemical Society.

[7]  Xiaogang Peng,et al.  Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals , 2003 .

[8]  Yuval Golan,et al.  Synthesis, assembly, and optical properties of shape- and phase-controlled ZnSe nanostructures. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[9]  A. Bard,et al.  Effect of Surface Passivation on the Electrogenerated Chemiluminescence of CdSe/ZnSe Nanocrystals , 2003 .

[10]  M. Bawendi,et al.  Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. , 2005, Journal of the American Chemical Society.

[11]  N. Yao,et al.  High-Quality Manganese-Doped ZnSe Nanocrystals , 2001 .

[12]  Yuliang Zhang,et al.  Facile and Reproducible Synthesis of Red-Emitting CdSe Nanocrystals in Amine with Long-Term Fixation of Particle Size and Size Distribution , 2007 .

[13]  Paul I. Archer,et al.  Bimodal bond-length distributions in cobalt-doped CdSe, ZnSe, and Cd1-xZnxSe quantum dots. , 2007, Journal of the American Chemical Society.

[14]  G. Zou,et al.  Colloidal CdSe nanocrystals synthesized in noncoordinating solvents with the addition of a secondary ligand: exceptional growth kinetics. , 2006, The journal of physical chemistry. B.

[15]  Xiaogang Peng,et al.  Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach , 2004 .

[16]  M. L. Curri,et al.  Shape and Phase Control of Colloidal ZnSe Nanocrystals , 2005 .

[17]  S. Erwin,et al.  Impact of ripening on manganese-doped ZnSe nanocrystals. , 2006, Nano letters.

[18]  N. Pradhan,et al.  Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. , 2007, Nano letters.

[19]  Xiaogang Peng,et al.  High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors , 2004 .

[20]  A. Alivisatos,et al.  CdSe Nanocrystal Rods/Poly(3‐hexylthiophene) Composite Photovoltaic Devices , 1999 .

[21]  William W. Yu,et al.  Stable and Bright Water-Soluble Quantum Dots , 2006 .

[22]  Peter Reiss,et al.  Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion , 2002 .

[23]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[24]  Xiaogang Peng,et al.  Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent , 2002 .

[25]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[26]  Tae Geun Kim,et al.  Ripening kinetics of CdSe/ZnSe core/shell nanocrystals , 2007 .

[27]  Xiaogang Peng,et al.  Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. , 2002, Angewandte Chemie.

[28]  William W. Yu,et al.  Formation of CdTe nanostructures with dot, rod, and tetrapod shapes , 2006 .

[29]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[30]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .

[31]  N. Pradhan,et al.  Crystalline nanoflowers with different chemical compositions and physical properties grown by limited ligand protection. , 2006, Angewandte Chemie.

[32]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[33]  P. Guyot-Sionnest,et al.  Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals , 1998 .

[34]  Rebekah Drezek,et al.  Water-soluble quantum dots for biomedical applications. , 2006, Biochemical and biophysical research communications.

[35]  A. Çelik,et al.  A study on the investigation of cadmium chloride genotoxicity in rat bone marrow using micronucleus test and chromosome aberration analysis , 2005, Toxicology and industrial health.

[36]  G. Zou,et al.  Facile synthesis of magic-sized CdSe and CdTe nanocrystals with tunable existence periods , 2007 .

[37]  William W. Yu,et al.  Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. , 2004, Chemical communications.

[38]  N. Pradhan,et al.  An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. , 2005, Journal of the American Chemical Society.

[39]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[40]  Nick S. Norberg,et al.  Giant excitonic Zeeman splittings in colloidal Co2+ -doped ZnSe quantum dots. , 2006, Journal of the American Chemical Society.

[41]  Bin Wu,et al.  A trinuclear zinc–cerium complex: [CeZn2{CH2C(CH3)COO}6(NO3)(2,2′-bi­pyridine)2] , 2004 .

[42]  Rebekah Drezek,et al.  Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. , 2007, Journal of the American Chemical Society.

[43]  Klavs F. Jensen,et al.  Full Color Emission from II–VI Semiconductor Quantum Dot–Polymer Composites , 2000 .

[44]  Uri Banin,et al.  Lasing from Semiconductor Quantum Rods in a Cylindrical Microcavity , 2002 .

[45]  C. Pettinari,et al.  The competition between acetate and pyrazolate in the formation of polynuclear Zn(II) coordination complexes. , 2006, Dalton transactions.

[46]  Christie M. Sayes,et al.  Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer , 2006 .

[47]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[48]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[49]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.