From hyperbolic Dehn filling to surgeries in representation varieties
暂无分享,去创建一个
[1] Moduli spaces of Higgs bundles on degenerating Riemann surfaces , 2015, 1507.04382.
[2] N. Hitchin. THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE , 1987 .
[3] Andr'es Sambarino,et al. The pressure metric for Anosov representations , 2013, 1301.7459.
[4] M. Arroyo. The geometry of the so(p,q)-higgs bundles , 2009 .
[5] W. Thurston. The geometry and topology of three-manifolds , 1979 .
[6] M. Lackenby,et al. The maximal number of exceptional Dehn surgeries , 2008, 0808.1176.
[7] D. Rolfsen. Rational surgery calculus: extension of Kirby's theorem. , 1984 .
[8] Tengren Zhang,et al. Collar lemma for Hitchin representations , 2014, 1411.2082.
[9] B. Kostant,et al. The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group , 1959 .
[10] Beatrice Pozzetti,et al. Positive surface group representations in PO(p,q) , 2021, 2106.14725.
[11] Olivier Y Guichard,et al. Topological invariants of Anosov representations , 2009, 0907.0273.
[12] M. Burger,et al. Surface group representations with maximal Toledo invariant , 2003, math/0605656.
[13] J. Millson. On the first Betti number of a constant negatively curved manifold , 1976 .
[14] M. Raghunathan. Discrete subgroups of Lie groups , 1972 .
[15] C. Simpson. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization , 1988 .
[16] A. Bobenko. Compact Riemann Surfaces , 2005 .
[17] Olivier Guichard. Composantes de Hitchin et représentations hyperconvexes de groupes de surface , 2008 .
[18] Brian Collier. SO(n,n+1)-surface group representations and their Higgs bundles , 2017, 1710.01287.
[19] N. Hitchin. LIE-GROUPS AND TEICHMULLER SPACE , 1992 .
[20] M. Dehn,et al. Über die Topologie des dreidimensionalen Raumes , 1910 .
[21] Anna Wienhard. AN INVITATION TO HIGHER TEICHMÜLLER THEORY , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).
[22] Michael Wolf. The Teichmüller theory of harmonic maps , 1989 .
[23] Friedhelm Waldhausen,et al. On irreducible 3-manifolds which are sufficiently large * , 2010 .
[24] W. B. R. Lickorish,et al. A Representation of Orientable Combinatorial 3-Manifolds , 1962 .
[26] W. Goldman. GEOMETRIC STRUCTURES ON MANIFOLDS AND VARIETIES OF REPRESENTATIONS , 1988 .
[27] S. Donaldson. Geometry of four-manifolds , 1990 .
[28] Anosov representations: domains of discontinuity and applications , 2011, 1108.0733.
[29] Beatrice Pozzetti,et al. A collar lemma for partially hyperconvex surface group representations , 2020, Transactions of the American Mathematical Society.
[30] G. Perelman. Ricci flow with surgery on three-manifolds , 2003, math/0303109.
[31] G. Fitzgerald,et al. 'I. , 2019, Australian journal of primary health.
[32] J. Millson,et al. Deformation Spaces Associated to Compact Hyperbolic Manifolds , 1986 .
[33] J. D. Miller. Modifications and cobounding manifolds , 1967 .
[34] J. Morgan,et al. On Thurston''s uniformization theorem for three-dimensional manifolds , 1984 .
[35] Lorenzo Foscolo. A gluing construction for periodic monopoles , 2014, 1411.6951.
[36] H. Konno. Construction of the moduli space of stable parabolic Higgs bundles on a Riemann surface , 1993 .
[37] Basmajian's identity in higher Teichmüller–Thurston theory , 2015, 1504.00649.
[38] O. G. Prada. Higgs bundles and higher Teichmüller spaces , 2020 .
[39] C. S. Seshadri,et al. Moduli of vector bundles on curves with parabolic structures , 1980 .
[40] C. Simpson. Higgs bundles and local systems , 1992 .
[41] C. Taubes. Self-dual Yang-Mills connections on non-self-dual 4-manifolds , 1982 .
[42] Vorlesungen über die Theorie der automorphen Funktionen , 1914 .
[43] W. Goldman. Topological components of spaces of representations , 1988 .
[44] S. Cappell,et al. Self-Adjoint Elliptic Operators and Manifold Decompositions Part I: Low Eigenmodes and Stretching , 1996 .
[45] ON THE CAPPELL-LEE-MILLER GLUING THEOREM , 1998, math/9803154.
[46] W. Haken. Theorie der Normalflächen , 1961 .
[47] A. Reid. A non-Haken hyperbolic $3$-manifold covered by a surface bundle. , 1995 .
[48] Hao Sun,et al. Topological invariants of parabolic G-Higgs bundles , 2018, Mathematische Zeitschrift.
[49] W. Goldman. The Symplectic Nature of Fundamental Groups of Surfaces , 1984 .
[50] Andr'es Sambarino,et al. An introduction to pressure metrics for higher Teichmüller spaces , 2015, Ergodic Theory and Dynamical Systems.
[51] M. Bridgeman. Average bending of convex pleated planes in hyperbolic three-space , 1998 .
[52] S. Donaldson. Twisted harmonic maps and the self-duality equations , 1987 .
[53] W. Haken,et al. Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I , 1962 .
[54] Olivier Y Guichard,et al. Positivity and higher Teichm\"uller theory , 2018, 1802.02833.
[55] A. Schmitt. Geometric Invariant Theory and Decorated Principal Bundles , 2008 .
[56] Christos Kourouniotis,et al. Deformations of hyperbolic structures , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.
[57] J. Luecke. Dehn Surgery on Knots in the 3-Sphere , 1995 .
[58] M. B. Pozzetti,et al. Basmajian-type inequalities for maximal representations , 2016, Journal of Differential Geometry.
[59] R. Potrie,et al. Eigenvalues and entropy of a Hitchin representation , 2014, Inventiones mathematicae.
[60] C. Hodgson,et al. DEHN FILLING: A SURVEY , 2011 .
[61] Jürgen Jost,et al. Compact Riemann Surfaces - An Introduction to Contemporary Mathematics, Third Edition , 2006, Universitext.
[62] S. Bradlow,et al. SO(p,q)-Higgs bundles and higher Teichm\"uller components , 2018 .
[63] Georgios Kydonakis. Model Higgs Bundles in Exceptional Components of the Sp(4,R)-Character Variety , 2018, JOURNAL OF ADVANCES IN MATHEMATICS.
[64] F. Labourie. Cross ratios, surface groups, PSL(n,ℝ) and diffeomorphisms of the circle , 2007 .
[65] Oscar Garcia-Prada,et al. Parabolic Higgs bundles and representations of the fundamental group of a punctured surface into a real group , 2015, Advances in Mathematics.
[66] Siqi He. A gluing theorem for the Kapustin–Witten equations with a Nahm pole , 2017, Journal of Topology.
[67] Ulrich Oertel,et al. An algorithm to decide if a 3-manifold is a Haken manifold , 1984 .
[68] Universal bounds for hyperbolic Dehn surgery , 2002, math/0204345.
[69] S. Wolpert. The Fenchel-Nielsen deformation , 1982 .
[70] M. Boileau,et al. Geometrization of 3-orbifolds of cyclic type , 1998, math/9805073.
[71] Andr'e Oliveira,et al. A general Cayley correspondence and higher Teichm\"uller spaces , 2021 .
[72] J. Hubbard. Teichmüller Theory and Applications to Geometry, Topology, and Dynamics , 2016 .
[73] Moduli spaces of local systems and higher Teichmüller theory , 2003, math/0311149.
[74] M. B. Pozzetti,et al. Maximal representations, non Archimedean Siegel spaces, and buildings , 2015, 1509.01184.
[75] Carlos Simpson,et al. Harmonic bundles on noncompact curves , 1990 .
[76] Gabriele Mondello. Topology of representation spaces of surface groups in PSL(2,R) with assigned boundary monodromy , 2016, 1607.04634.
[77] The moduli space of hyperbolic cone structures , 1998, math/9805129.
[78] S. Boyer. Dehn surgery on knots , 1998 .
[79] Bending in the space of quasi-Fuchsian structures , 1991 .
[80] C. Kourouniotis. Discrete Groups and Geometry: The geometry of bending quasi-Fuchsian groups , 1992 .
[81] D. Epstein,et al. Fundamentals of Hyperbolic Manifolds: CONVEX HULLS IN HYPERBOLIC SPACE, A THEOREM OF SULLIVAN, AND MEASURED PLEATED SURFACES , 2006 .
[82] C. Ehresmann. Les connexions infinitésimales dans un espace fibré différentiable , 1951 .
[83] J. Swoboda,et al. Ends of the moduli space of Higgs bundles , 2014, 1405.5765.
[84] Moduli for decorated tuples of sheaves and representation spaces for quivers , 2004, math/0401173.
[85] Kevin Corlette,et al. Flat $G$-bundles with canonical metrics , 1988 .
[86] F. Labourie,et al. Cross ratios and identities for higher Teichmüller-Thurston theory , 2006, math/0611245.
[87] P. Boalch,et al. Wild non-abelian Hodge theory on curves , 2001, Compositio Mathematica.
[88] G. Lusztig. Total Positivity in Reductive Groups , 2019 .
[89] W. Goldman. Flat Affine, Projective and Conformal Structures on Manifolds: A Historical Perspective , 2019, Geometry in History.
[90] Maximal Representations of Surface Groups: Symplectic Anosov Structures , 2005, math/0506079.
[91] Gang Tian,et al. The Geometrization Conjecture , 2014 .
[92] Yi Huang,et al. McShane Identities for Higher Teichmüller Theory and the Goncharov–Shen Potential , 2019, Memoirs of the American Mathematical Society.
[93] Michael Wolf. Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space , 1991 .
[94] O. García-Prada,et al. The Hitchin-Kobayashi correspondence, Higgs pairs and surface group representations , 2009, 0909.4487.