Endosymbiosis and Eukaryotic Cell Evolution

Understanding the evolution of eukaryotic cellular complexity is one of the grand challenges of modern biology. It has now been firmly established that mitochondria and plastids, the classical membrane-bound organelles of eukaryotic cells, evolved from bacteria by endosymbiosis. In the case of mitochondria, evidence points very clearly to an endosymbiont of α-proteobacterial ancestry. The precise nature of the host cell that partnered with this endosymbiont is, however, very much an open question. And while the host for the cyanobacterial progenitor of the plastid was undoubtedly a fully-fledged eukaryote, how - and how often - plastids moved from one eukaryote to another during algal diversification is vigorously debated. In this article I frame modern views on endosymbiotic theory in a historical context, highlighting the transformative role DNA sequencing played in solving early problems in eukaryotic cell evolution, and posing key unanswered questions emerging from the age of comparative genomics.

[1]  M W Gray,et al.  The endosymbiont hypothesis revisited. , 1992, International review of cytology.

[2]  Liran Carmel,et al.  Origin and evolution of spliceosomal introns , 2012, Biology Direct.

[3]  W. Martin,et al.  The difference between organelles and endosymbionts , 2006, Current Biology.

[4]  Betsey Dexter Dyer,et al.  The origin of eukaryotic cells , 1985 .

[5]  Jostein Goksøyr Evolution of Eucaryotic Cells , 1967, Nature.

[6]  Eugene V. Koonin,et al.  Introns and the origin of nucleus–cytosol compartmentalization , 2006, Nature.

[7]  S. Ball,et al.  Toward an understanding of the function of Chlamydiales in plastid endosymbiosis. , 2015, Biochimica et biophysica acta.

[8]  Uwe G Maier,et al.  The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution , 2008, BMC Evolutionary Biology.

[9]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[10]  T. Cavalier-smith Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2 , 1999, The Journal of eukaryotic microbiology.

[11]  M. Hasegawa,et al.  Early evolution of eukaryotes inferred from protein phylogenies of translation elongation factors 1α and 2 , 1997 .

[12]  B. Lang,et al.  Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. , 2010, Molecular biology and evolution.

[13]  Debashish Bhattacharya,et al.  A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.

[14]  E. Koonin The origin and early evolution of eukaryotes in the light of phylogenomics , 2010, Genome Biology.

[15]  W. Schwartz R. Y. Stanier, E. A. Adelberg and J. L. Ingraham, The Microbial World (4th Edition). XV, 871 S., 614 Abb., 165 Tab. Englewood Cliffs 1976. Prentice Hall Inc. £ 15.75 , 1979 .

[16]  N. Moran,et al.  Small, Smaller, Smallest: The Origins and Evolution of Ancient Dual Symbioses in a Phloem-Feeding Insect , 2013, Genome biology and evolution.

[17]  P. Raven,et al.  ORIGIN OF EUKARYOTIC CELLS , 1971 .

[18]  N. Moran,et al.  The tiniest tiny genomes. , 2014, Annual review of microbiology.

[19]  Tom A. Williams,et al.  Archaeal “Dark Matter” and the Origin of Eukaryotes , 2014, Genome biology and evolution.

[20]  A. Nakabachi,et al.  Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont , 2014, Current Biology.

[21]  M. M. Nass,et al.  INTRAMITOCHONDRIAL FIBERS WITH DNA CHARACTERISTICS: I. Fixation and Electron Staining Reactions , 1963 .

[22]  W. Martin,et al.  Endosymbiotic theory for organelle origins. , 2014, Current opinion in microbiology.

[23]  E. Koonin,et al.  Comparative genomics of archaea: how much have we learned in six years, and what's next? , 2003, Genome Biology.

[24]  S. P. Gibbs,et al.  Looking at life: from binoculars to the electron microscope. , 2006, Annual review of plant biology.

[25]  L. Sagan AN UNUSUAL PATTERN OF TRITIATED THYMIDINE INCORPORATION IN EUGLENA. , 1965, The Journal of protozoology.

[26]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Cavalier-smith,et al.  The origin of nuclei and of eukaryotic cells , 1975, Nature.

[28]  J D Palmer,et al.  The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[29]  C. Woese,et al.  Phylogenetic origin of the chloroplast and prokaryotic nature of its ribosomal RNA. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Roger,et al.  Supplemental Data Organelles in Blastocystis That Blur the Distinction between Mitochondria and Hydrogenosomes , 2022 .

[31]  G. McFadden,et al.  The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. , 2007, Molecular biology and evolution.

[32]  J. Stiller Experimental design and statistical rigor in phylogenomics of horizontal and endosymbiotic gene transfer , 2011, BMC Evolutionary Biology.

[33]  T. Cavalier-smith A 6-Klngdom Classification And A Unified Phylogeny , 1983 .

[34]  J. McCutcheon,et al.  Endosymbiosis: Protein Targeting Further Erodes the Organelle/Symbiont Distinction , 2014, Current Biology.

[35]  W. Martin,et al.  The hydrogen hypothesis for the first eukaryote , 1998, Nature.

[36]  Masasuke Yoshida,et al.  Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[37]  W. Doolittle,et al.  On the prokaryotic nature of red algal chloroplasts. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Chuan Ku,et al.  Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes , 2015, Proceedings of the National Academy of Sciences.

[39]  T. Gabaldón Peroxisome diversity and evolution , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  Alfred Pühler,et al.  Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids , 2012, Genome biology and evolution.

[41]  A. Bodyl,et al.  Did the peridinin plastid evolve through tertiary endosymbiosis? A hypothesis , 2006 .

[42]  Y. Inagaki,et al.  Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle , 2014, Proceedings of the National Academy of Sciences.

[43]  T. Cavalier-smith,et al.  Protozoa as Hosts for Endosymbioses and the Conversion of Symbionts into Organelles1,2 , 1985 .

[44]  Detlef D. Leipe,et al.  Small subunit ribosomal RNA+ of Hexamita inflata and the quest for the first branch in the eukaryotic tree. , 1993, Molecular and biochemical parasitology.

[45]  Anastasios D. Tsaousis,et al.  Diversity and reductive evolution of mitochondria among microbial eukaryotes , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  Y. Inagaki,et al.  Spheroid bodies in rhopalodiacean diatoms were derived from a single endosymbiotic cyanobacterium , 2010, Journal of Plant Research.

[47]  E. Nowack Paulinella chromatophora – rethinking the transition from endosymbiont to organelle , 2014 .

[48]  D. Taylor A multiple origin for plastids and mitochondria. , 1970, Science.

[49]  A. Bacic,et al.  Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate , 2015, Proceedings of the National Academy of Sciences.

[50]  A. Roger,et al.  Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen , 2012, Biology Direct.

[51]  P. Keeling,et al.  The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. , 2013, Annual review of plant biology.

[52]  T. Cavalier-smith Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution , 2010, Biology Direct.

[53]  F. Taylor,et al.  II. IMPLICATIONS AND EXTENSIONS OF THE SERIAL ENDOSYMBIOSIS THEORY OF THE ORIGIN OF EUKARYOTES , 1974 .

[54]  K. Schleifer,et al.  Coexistence of tubulins and ftsZ in different Prosthecobacter species. , 2007, Molecular biology and evolution.

[55]  G. McFadden,et al.  Plastid evolution. , 2008, Annual review of plant biology.

[56]  A. Weber,et al.  The origin and establishment of the plastid in algae and plants. , 2007, Annual review of genetics.

[57]  L. Sagan On the origin of mitosing cells , 1967, Journal of theoretical biology.

[58]  D. Soldati-Favre,et al.  Metabolic pathways in the apicoplast of apicomplexa. , 2010, International review of cell and molecular biology.

[59]  Hyman Hartman,et al.  The origin of the eukaryotic cell: A genomic investigation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  C. Delwiche,et al.  A HYPOTHESIS FOR PLASTID EVOLUTION IN CHROMALVEOLATES 1 , 2008, Journal of phycology.

[61]  J. Archibald Genomic perspectives on the birth and spread of plastids , 2015, Proceedings of the National Academy of Sciences.

[62]  W. Martin,et al.  Endosymbiotic theories for eukaryote origin , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[63]  R. Klein,et al.  A Consideration of the Evolutionary and Taxonomic Significance of Some Biochemical, Micromorphological, and Physiological Characters in the Thallophytes , 1967, The Quarterly Review of Biology.

[64]  P. Mackiewicz,et al.  Tertiary Plastid Endosymbioses in Dinoflagellates , 2014 .

[65]  W. Martin,et al.  Protein Import and the Origin of Red Complex Plastids , 2015, Current Biology.

[66]  Stanley E. Mills,et al.  The Microbial World , 1957, The Yale Journal of Biology and Medicine.

[67]  C. Duve The origin of eukaryotes: a reappraisal , 2007, Nature Reviews Genetics.

[68]  P. Forterre,et al.  The Rooting of the Universal Tree of Life Is Not Reliable , 1999, Journal of Molecular Evolution.

[69]  B. Frank On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an English translation of A.B. Frank’s classic paper of 1885) , 2005, Mycorrhiza.

[70]  M. Melkonian,et al.  Robert Lauterborn (1869-1952) and his Paulinella chromatophora. , 2005, Protist.

[71]  W. Doolittle,et al.  Microbial Diversity: A Bonanza of Phyla , 2015, Current Biology.

[72]  Ping Xu,et al.  Complete Genome Sequence of the Apicomplexan, Cryptosporidium parvum , 2004, Science.

[73]  Buzz Baum,et al.  An inside-out origin for the eukaryotic cell , 2014, BMC Biology.

[74]  S. Berch,et al.  Re-publication of a translation of ‘The vegetative organs of Monotropa hypopitys L.’ published by F. Kamienski in 1882, with an update on Monotropa mycorrhizas , 2005, Mycorrhiza.

[75]  W. Martin,et al.  The origin of mitochondria in light of a fluid prokaryotic chromosome model , 2007, Biology Letters.

[76]  J. Archibald The Puzzle of Plastid Evolution , 2009, Current Biology.

[77]  T. Cavalier-smith,et al.  Eukaryotes with no mitochondria , 1987, Nature.

[78]  L. Hug,et al.  Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. , 2010, Molecular biology and evolution.

[79]  M. O. Dayhoff,et al.  Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. , 1978, Science.

[80]  H. Brinkmann,et al.  Chromera velia, Endosymbioses and the Rhodoplex Hypothesis—Plastid Evolution in Cryptophytes, Alveolates, Stramenopiles, and Haptophytes (CASH Lineages) , 2014, Genome biology and evolution.

[81]  Daniel J. G. Lahr,et al.  Estimating the timing of early eukaryotic diversification with multigene molecular clocks , 2011, Proceedings of the National Academy of Sciences.

[82]  D. Horner,et al.  Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[83]  C. Woese Default taxonomy: Ernst Mayr's view of the microbial world. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[84]  H. Ris,et al.  ULTRASTRUCTURE OF DNA-CONTAINING AREAS IN THE CHLOROPLAST OF CHLAMYDOMONAS , 1962, The Journal of cell biology.

[85]  W. Martin,et al.  The energetics of genome complexity , 2010, Nature.

[86]  P. Deschamps Primary endosymbiosis: have cyanobacteria and Chlamydiae ever been roommates? , 2014 .

[87]  J. Pačes,et al.  Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. , 2015, Molecular biology and evolution.

[88]  A. Grossman,et al.  Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora , 2012, Proceedings of the National Academy of Sciences.

[89]  C. de Duve Peroxisomes and related particles in historical perspective. , 1982, Annals of the New York Academy of Sciences.

[90]  W. Plaut,et al.  Incorporation of Thymidine in the Cytoplasm of Amoeba proteus , 1958, The Journal of biophysical and biochemical cytology.

[91]  Jinling Huang,et al.  The evolution of photosynthesis in chromist algae through serial endosymbioses , 2014, Nature Communications.

[92]  S. Osawa,et al.  Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[93]  J. Archibald,et al.  Diversity and Evolution of Plastids and Their Genomes , 2008 .

[94]  E. Mayr Two empires or three? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[95]  T. Uzzell,et al.  Mitochondria and plastids as endosymbionts: a revival of special creation? , 1974, American scientist.

[96]  J. Lake,et al.  Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[97]  M. W. Gray,et al.  Evidence for a Hydrogenosomal-Type Anaerobic ATP Generation Pathway in Acanthamoeba castellanii , 2013, PloS one.

[98]  P. Keeling The impact of history on our perception of evolutionary events: endosymbiosis and the origin of eukaryotic complexity. , 2014, Cold Spring Harbor perspectives in biology.

[99]  M. Sogin,et al.  Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. , 1989, Science.

[100]  W. Doolittle,et al.  Has the endosymbiont hypothesis been proven? , 1982, Microbiological reviews.

[101]  J. Sapp The Prokaryote-Eukaryote Dichotomy: Meanings and Mythology , 2005, Microbiology and Molecular Biology Reviews.

[102]  T. Williams,et al.  An archaeal origin of eukaryotes supports only two primary domains of life , 2013, Nature.

[103]  W. Doolittle,et al.  Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[104]  A. Sandelius,et al.  The chloroplast : interactions with the environment , 2010 .

[105]  A. D. Bary,et al.  Die Erscheinung der Symbiose , 1879 .

[106]  Maureen A. O’Malley The first eukaryote cell: an unfinished history of contestation. , 2010, Studies in history and philosophy of biological and biomedical sciences.

[107]  W. Martin,et al.  Eukaryotic evolution, changes and challenges , 2006, Nature.

[108]  J. Archibald,et al.  One Plus One Equals One: Symbiosis and the evolution of complex life , 2014 .

[109]  T. Embley,et al.  Evolution: Steps on the road to eukaryotes , 2015, Nature.

[110]  W. Martin,et al.  ANNOTATED ENGLISH TRANSLATION OF MERESCHKOWSKY'S 1905 PAPER 'UBER NATUR UND URSPRUNG DER CHROMATOPHOREN IM PFLANZENREICHE' , 1999 .

[111]  L. Margulis Symbiosis in cell evolution: Life and its environment on the early earth , 1981 .

[112]  Thijs J. G. Ettema,et al.  Complex archaea that bridge the gap between prokaryotes and eukaryotes , 2015, Nature.

[113]  J. Tovar Mitosomes of Parasitic Protozoa: Biology and Evolutionary Significance , 2007 .

[114]  W. Martin,et al.  Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes , 2012, Microbiology and Molecular Reviews.

[115]  C R Woese,et al.  Mitochondrial origins. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[116]  J. Sapp Evolution by association : a history of symbiosis , 1994 .

[117]  Jessica C Kissinger,et al.  Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum , 2004, Genome Biology.

[118]  J. McCutcheon,et al.  Horizontal Gene Transfer from Diverse Bacteria to an Insect Genome Enables a Tripartite Nested Mealybug Symbiosis , 2013, Cell.

[119]  E. Koonin,et al.  Archaeal origin of tubulin , 2012, Biology Direct.

[120]  L. Bogorad Evolution of organelles and eukaryotic genomes. , 1975, Science.

[121]  Hervé Philippe,et al.  Early–branching or fast–evolving eukaryotes? An answer based on slowly evolving positions , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[122]  N. McCarthy,et al.  Time to Change , 2017 .

[123]  W. Doolittle,et al.  Wheat embryo mitochondrial 18S ribosomal RNA: evidence for its prokaryotic nature. , 1977, Nucleic acids research.

[124]  Jan Sapp,et al.  Symbiogenesis: the hidden face of Constantin Merezhkowsky. , 2002, History and philosophy of the life sciences.

[125]  Edward Susko,et al.  Covarion shifts cause a long-branch attraction artifact that unites microsporidia and archaebacteria in EF-1alpha phylogenies. , 2004, Molecular biology and evolution.

[126]  R. Raff,et al.  The non symbiotic origin of mitochondria. , 1972, Science.

[127]  W. Doolittle,et al.  Partial sequences of 16S rRNA and the phylogeny of blue-green algae and chloroplasts , 1976, Nature.

[128]  R. Honegger Simon Schwendener (1829–1919) and the Dual Hypothesis of Lichens , 2000 .

[129]  C. de Duve Evolution of the peroxisome. , 1969, Annals of the New York Academy of Sciences.

[130]  R. Lewin,et al.  Extraordinary pigment composition of a prokaryotic alga , 1975, Nature.