Random Reducts: A Monte Carlo Rough Set-based Method for Feature Selection in Large Datasets
暂无分享,去创建一个
Jan Komorowski | Nicholas Baltzer | Jacek Koronacki | Michal Draminski | Jakub Mieczkowski | Marcin Kruczyk | J. Komorowski | J. Koronacki | M. Kruczyk | J. Mieczkowski | Michal Draminski | N. Baltzer | Michał Dramiński | Marcin Kruczyk
[1] Aleksander Ohrn,et al. ROSETTA -- A Rough Set Toolkit for Analysis of Data , 1997 .
[2] Jan Komorowski,et al. BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm486 Data and text mining Monte Carlo , 2022 .
[3] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .
[4] Andrzej Skowron,et al. Dynamic Reducts as a Tool for Extracting Laws from Decisions Tables , 1994, ISMIS.
[5] DramińskiMichał,et al. Monte Carlo feature selection for supervised classification , 2008 .
[6] Jan Komorowski,et al. Monte Carlo Feature Selection and Interdependency Discovery in Supervised Classification , 2010, Advances in Machine Learning II.
[7] Andrzej Skowron,et al. The rough sets theory and evidence theory , 1990 .
[8] Jan Komorowski,et al. A study on Monte Carlo Gene Screening , 2005, Intelligent Information Systems.
[9] Andrzej Skowron,et al. The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.
[10] Roman W. Świniarski,et al. Rough sets methods in feature reduction and classification , 2001 .
[11] N. Metropolis,et al. The Monte Carlo method. , 1949 .
[12] Jerzy W. Grzymala-Busse,et al. Rough Sets , 1995, Commun. ACM.