Advances in Atomic Gyroscopes: A View from Inertial Navigation Applications

With the rapid development of modern physics, atomic gyroscopes have been demonstrated in recent years. There are two types of atomic gyroscope. The Atomic Interferometer Gyroscope (AIG), which utilizes the atomic interferometer to sense rotation, is an ultra-high precision gyroscope; and the Atomic Spin Gyroscope (ASG), which utilizes atomic spin to sense rotation, features high precision, compact size and the possibility to make a chip-scale one. Recent developments in the atomic gyroscope field have created new ways to obtain high precision gyroscopes which were previously unavailable with mechanical or optical gyroscopes, but there are still lots of problems that need to be overcome to meet the requirements of inertial navigation systems. This paper reviews the basic principles of AIG and ASG, introduces the recent progress in this area, focusing on discussing their technical difficulties for inertial navigation applications, and suggests methods for developing high performance atomic gyroscopes in the near future.

[1]  Mohinder S. Grewal,et al.  Global Positioning Systems, Inertial Navigation, and Integration , 2000 .

[2]  Massimo Inguscio,et al.  A Compact Atom Interferometer for Future Space Missions , 2010 .

[3]  Saijun Wu Light pulse Talbot -Lau interferometry with magnetically guided atoms , 2007 .

[4]  M. Romalis,et al.  High-Temperature Alkali Vapor Cells with Anti-Relaxation Surface Coatings , 2009, 0906.3054.

[5]  K. Takase,et al.  Precision rotation rate measurements with a mobile atom interferometer , 2008 .

[6]  G. Schmidt,et al.  Inertial sensor technology trends , 1998, Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles (Cat. No.98CH36290).

[7]  Time Forum 2009 joint meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium : Besancon, France, 20-24 April, 2009 , 2009 .

[8]  John Kitching,et al.  Differential atomic magnetometry based on a diverging laser beam , 2007 .

[9]  J. Kitching,et al.  Chip-scale atomic magnetometer , 2004 .

[10]  J. Kinast,et al.  Inertially sensitive light pulse atom interferometry at short interrogation times , 2011 .

[11]  M. Prentiss,et al.  Demonstration of a multipulse interferometer for quantum kicked-rotor studies , 2009 .

[12]  H. Rice,et al.  Submarine navigation applications of atom interferometry , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.

[13]  G. L. Shaw Modeling a Cryogenic HE3 Nuclear Gyro. , 1980 .

[14]  John F. Clauser,et al.  Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry☆ , 1988 .

[15]  Philippe Bouyer,et al.  Dual-atomic-beam matter-wave gyroscope , 1998, Photonics West.

[16]  R. Lutwak The Chip-Scale Atomic Clock - Recent developments , 2009, 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum.

[17]  K. Marzlin,et al.  State-Independence in Atom Interferometry, and Insensitivity to Acceleration and Rotation , 1996, EQEC'96. 1996 European Quantum Electronic Conference.

[18]  David LaGrange Butts,et al.  Light pulse atom interferometry at short interrogation times for inertial navigation , 2011 .

[19]  P. Heimann,et al.  Quadrupole perturbation effects upon the 201 Hg magnetic resonance. II. Relaxation due to an anisotropic perturbation , 1981 .

[20]  S. J. Seltzer,et al.  Developments in alkali -metal atomic magnetometry , 2008 .

[21]  T. Gustavson,et al.  Precision Rotation Sensing Using Atom Interferometry , 2000 .

[22]  Atomic sensors: Chip-scale magnetometers , 2007 .

[23]  John Weston,et al.  Strapdown Inertial Navigation Technology , 1997 .

[24]  John K. Stockton,et al.  Absolute geodetic rotation measurement using atom interferometry. , 2011, Physical review letters.

[25]  Alexey Tonyushkin,et al.  Observation of saturation of fidelity decay with an atom interferometer. , 2008, Physical review letters.

[26]  Atom interferometer as a selective sensor of rotation or gravity , 2006, physics/0604082.

[27]  T. Gustavson,et al.  Rotation sensing with a dual atom-interferometer Sagnac gyroscope , 2000 .

[28]  M. Romalis,et al.  New limit on Lorentz- and CPT-violating neutron spin interactions. , 2010, Physical review letters.

[29]  M. Romalis,et al.  Nuclear spin gyroscope based on an atomic comagnetometer. , 2005, Physical review letters.

[30]  L. K. Lam,et al.  Application Of CW Single-Mode GaAlAs Lasers To Rb-Xe NMR Gyroscopes , 1983, Other Conferences.

[31]  M. Prentiss,et al.  Demonstration of an area-enclosing guided-atom interferometer for rotation sensing. , 2006, Physical review letters.

[32]  D. Budker,et al.  Optically Polarized Atoms: Understanding light-atom interactions , 2010 .

[33]  Versatile compact atomic source for high-resolution dual atom interferometry , 2007, 0705.4544.

[34]  S. Chu,et al.  Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer , 1992 .

[35]  J. Rinehart U . S . Patent , 2006 .

[36]  T. Walker,et al.  Optically Pumped Atoms , 2010 .

[37]  J. Farrell,et al.  The global positioning system and inertial navigation , 1999 .

[38]  Alan J. Pue,et al.  Inertial Navigation for Guided Missile Systems , 2010 .

[39]  M. Romalis,et al.  Dynamics of two overlapping spin ensembles interacting by spin exchange. , 2002, Physical review letters.

[40]  M. Kasevich,et al.  Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope. , 2005, Physical Review Letters.

[41]  Barton,et al.  Polarization-dependent frequency shifts from Rb-3He collisions. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[42]  D. James Optically Polarized Atoms: Understanding light-atom interactions , 2010 .

[43]  Mara Prentiss,et al.  Straight macroscopic magnetic guide for cold atom interferometer , 2010 .

[44]  A. Landragin,et al.  Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique. , 2009, Physical review letters.

[45]  J. Preston,et al.  A Cryogenic Nuclear Magnetic Resonance Gyroscope , 1981, Journal of Navigation.

[46]  M. Romalis,et al.  New test of local Lorentz invariance using a 21Ne-Rb-K comagnetometer. , 2011, Physical review letters.

[47]  Dana Z. Anderson,et al.  An Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate , 2004, cond-mat/0407689.

[48]  Mehring,et al.  Deviation from Berry's adiabatic geometric phase in a 131Xe nuclear gyroscope. , 1994, Physical review letters.

[49]  J. Mcneff The global positioning system , 2002 .

[50]  G. Varoquaux,et al.  Light-pulse atom interferometry in microgravity , 2009, 0903.3284.

[51]  P. Franks,et al.  The Nuclear Magnetic Resonance Gyroscope: a Review , 1987, Journal of Navigation.

[52]  Anthony Lawrence,et al.  Modern Inertial Technology: Navigation, Guidance, and Control , 1993 .

[53]  M. Romalis,et al.  High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. , 2002, Physical review letters.

[54]  Achim Peters,et al.  The Space Atom Interferometer project: status and prospects , 2011 .

[55]  S. Chiow,et al.  102ℏk large area atom interferometers. , 2011, Physical review letters.

[56]  W. Ertmer,et al.  A compact dual atom interferometer gyroscope based on laser-cooled rubidium , 2008, 0806.0956.

[57]  Chu,et al.  Atomic interferometry using stimulated Raman transitions. , 1991, Physical review letters.

[58]  A. Filler The History, Development and Impact of Computed Imaging in Neurological Diagnosis and Neurosurgery: CT, MRI, and DTI , 2009 .

[59]  E. Donley,et al.  Nuclear magnetic resonance gyroscopes , 2010, 2010 IEEE Sensors.

[60]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[61]  David E. Pritchard,et al.  Optics and Interferometry with Atoms and Molecules , 2009 .

[62]  F. G. Major The Quantum Beat: Principles and Applications of Atomic Clocks , 1998 .

[63]  Ernst Grimsehl,et al.  Physics of the Atom , 1935 .

[64]  Mark A. Kasevich,et al.  Optical lattices as waveguides and beam splitters for atom interferometry: An analytical treatment and proposal of applications , 2009, 0910.3435.

[65]  H.G. Wang,et al.  Strategic inertial navigation systems - high-accuracy inertially stabilized platforms for hostile environments , 2008, IEEE Control Systems.

[66]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[67]  Quentin Bodart,et al.  Double diffraction in an atomic gravimeter , 2009, 0909.0102.

[68]  Justin M. Brown,et al.  A New Limit on Lorentz- and CPT-Violating Neutron Spin Interactions Using a K-3He Comagnetometer , 2010 .

[69]  G. Vasilakis,et al.  Precision measurements of spin interactions with high density atomic vapors , 2011 .

[70]  Collisions give sense of direction , 2006 .

[71]  M. Kasevich,et al.  Sensitive absolute-gravity gradiometry using atom interferometry , 2001, physics/0105088.

[72]  T. Walker,et al.  Spin-exchange optical pumping of noble-gas nuclei , 1997 .

[73]  I. A. Greenwood,et al.  An Optically Pumped Nuclear Magnetic Resonance Gyroscope , 1963, IEEE Transactions on Aerospace.

[74]  J. H. Müller,et al.  High quality anti-relaxation coating material for alkali atom vapor cells. , 2009, Optics express.

[75]  B. Canuel,et al.  Six-axis inertial sensor using cold-atom interferometry. , 2006, Physical review letters.

[76]  George T Schmidt,et al.  INS/GPS Technology Trends , 2010 .

[77]  M. Romalis,et al.  Preliminary results from a test of CPT and Lorentz symmetry using a K- 3He co-magnetometer , 2008 .

[78]  M. Larsen,et al.  Nuclear Magnetic Resonance Gyroscope , 2014 .

[79]  Benjamin Canuel,et al.  Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer , 2008, IEEE Transactions on Instrumentation and Measurement.

[80]  T. Gustavson,et al.  Precision Rotation Measurements with an Atom Interferometer Gyroscope , 1997 .

[81]  A. Landragin,et al.  Detecting inertial effects with airborne matter-wave interferometry , 2011, Nature communications.

[82]  F. A. Karwacki NUCLEAR MAGNETIC RESONANCE GYRO DEVELOPMENT , 1980 .

[83]  J. Kinast,et al.  Analytical framework for dynamic light pulse atom interferometry at short interrogation times , 2011 .

[84]  Quadrupole perturbation effects upon theHg201magnetic resonance. I. Effects upon free precession of the nuclear spins , 1981 .