Fifteen Years of Quantum LDPC Coding and Improved Decoding Strategies

The near-capacity performance of classical low-density parity check (LDPC) codes and their efficient iterative decoding makes quantum LDPC (QLPDC) codes a promising candidate for quantum error correction. In this paper, we present a comprehensive survey of QLDPC codes from the perspective of code design as well as in terms of their decoding algorithms. We also conceive a modified non-binary decoding algorithm for homogeneous Calderbank-Shor-Steane-type QLDPC codes, which is capable of alleviating the problems imposed by the unavoidable length-four cycles. Our modified decoder outperforms the state-of-the-art decoders in terms of their word error rate performance, despite imposing a reduced decoding complexity. Finally, we intricately amalgamate our modified decoder with the classic uniformly reweighted belief propagation for the sake of achieving an improved performance.

[1]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[2]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[3]  J. Tillich,et al.  Constructions and performance of classes of quantum LDPC codes , 2005, quant-ph/0502086.

[4]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[5]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[6]  Dominic C. O'Brien,et al.  Wireless Myths, Realities, and Futures: From 3G/4G to Optical and Quantum Wireless , 2012, Proceedings of the IEEE.

[7]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  Lajos Hanzo,et al.  Reduced-Complexity Syndrome-Based TTCM Decoding , 2013, IEEE Communications Letters.

[9]  Vladimir D. Tonchev,et al.  Entanglement-assisted quantum low-density parity-check codes , 2010, ArXiv.

[10]  Wang Yun-jiang,et al.  Feedback iterative decoding of sparse quantum codes , 2010 .

[11]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[12]  I. Devetak,et al.  General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.

[13]  Martin J. Wainwright,et al.  A new class of upper bounds on the log partition function , 2002, IEEE Transactions on Information Theory.

[14]  Lajos Hanzo,et al.  Quantum-Assisted Routing Optimization for Self-Organizing Networks , 2014, IEEE Access.

[15]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[16]  Vladimir D. Tonchev,et al.  A Characterization of Entanglement-Assisted Quantum Low-Density Parity-Check Codes , 2011, IEEE Transactions on Information Theory.

[17]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[18]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[19]  Garry Bowen Entanglement required in achieving entanglement-assisted channel capacities , 2002 .

[20]  Iryna Andriyanova,et al.  Spatially coupled quantum LDPC codes , 2012, 2012 IEEE Information Theory Workshop.

[21]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[22]  John Preskill,et al.  Battling decoherence: The fault-tolerant quantum computer , 1999 .

[23]  Henk Wymeersch,et al.  Uniformly Reweighted Belief Propagation for Estimation and Detection in Wireless Networks , 2012, IEEE Transactions on Wireless Communications.

[24]  Henk Wymeersch,et al.  Locally-optimized reweighted belief propagation for decoding finite-length LDPC codes , 2013, 2013 IEEE Wireless Communications and Networking Conference (WCNC).

[25]  L. Pryadko,et al.  Quantum Kronecker sum-product low-density parity-check codes with finite rate , 2012, 1212.6703.

[26]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[27]  H. Bombin,et al.  Homological error correction: Classical and quantum codes , 2006, quant-ph/0605094.

[28]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[29]  David Poulin,et al.  Degenerate Viterbi Decoding , 2012, IEEE Transactions on Information Theory.

[30]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[31]  B. Vasic,et al.  Combinatorial constructions of low-density parity check codes for iterative decoding , 2002, Proceedings IEEE International Symposium on Information Theory,.

[32]  Yuichiro Fujiwara,et al.  Quantum error correction via less noisy qubits. , 2013, Physical review letters.

[33]  David J. C. MacKay More Sparse-Graph Codes for Quantum Error-Correction , 2007 .

[34]  Bahram Honary,et al.  Construction of low-density parity-check codes based on balanced incomplete block designs , 2004, IEEE Transactions on Information Theory.

[35]  Rodrigo C. de Lamare,et al.  Knowledge-aided reweighted belief propagation decoding for regular and irregular LDPC codes with short blocks , 2012, 2012 International Symposium on Wireless Communication Systems (ISWCS).

[36]  Rodrigo C. de Lamare,et al.  Low-Latency Reweighted Belief Propagation Decoding for LDPC Codes , 2012, IEEE Communications Letters.

[37]  H. Lou,et al.  Quantum error-correction using codes with low-density generator matrix , 2005, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005..

[38]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[39]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[40]  Peter Vandendriessche,et al.  High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits , 2013, IEEE Transactions on Information Theory.

[41]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[42]  Ivan B. Djordjevic,et al.  Quantum LDPC Codes from Balanced Incomplete Block Designs , 2008, IEEE Communications Letters.

[43]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[44]  Matthew B. Hastings,et al.  Homological product codes , 2013, STOC.

[45]  Lajos Hanzo,et al.  Quantum Search Algorithms, Quantum Wireless, and a Low-Complexity Maximum Likelihood Iterative Quantum Multi-User Detector Design , 2013, IEEE Access.

[46]  Bane V. Vasic,et al.  Combinatorial constructions of low-density parity-check codes for iterative decoding , 2002, IEEE Transactions on Information Theory.

[47]  Lajos Hanzo,et al.  Iterative Quantum-Assisted Multi-User Detection for Multi-Carrier Interleave Division Multiple Access Systems , 2015, IEEE Transactions on Communications.

[48]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[49]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[50]  Li-Yi Hsu,et al.  High Performance Entanglement-Assisted Quantum LDPC Codes Need Little Entanglement , 2009, IEEE Transactions on Information Theory.

[51]  Sheng Chen,et al.  Design of Low-Density Parity-Check Codes , 2011, IEEE Vehicular Technology Magazine.

[52]  Ivan B Djordjevic,et al.  Photonic entanglement-assisted quantum low-density parity-check encoders and decoders. , 2010, Optics letters.

[53]  David Poulin,et al.  On the iterative decoding of sparse quantum codes , 2008, Quantum Inf. Comput..

[54]  Gilles Zémor,et al.  Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.

[55]  J. Garcia-Frías,et al.  On the Application of Error-Correcting Codes with Low-Density Generator Matrix over Different Quantum Channels , 2006 .

[56]  Henk Wymeersch,et al.  Comparison of reweighted message passing algorithms for LDPC decoding , 2013, 2013 IEEE International Conference on Communications (ICC).

[57]  Lajos Hanzo,et al.  Noncoherent Quantum Multiple Symbol Differential Detection for Wireless Systems , 2015, IEEE Access.

[58]  Salah A. Aly,et al.  A Class of Quantum LDPC Codes Constructed From Finite Geometries , 2007, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[59]  P. Dirac Principles of Quantum Mechanics , 1982 .

[60]  Martin J. Wainwright,et al.  Convergence Analysis of Reweighted Sum-Product Algorithms , 2007, IEEE Transactions on Signal Processing.

[61]  Michael S. Postol A Proposed Quantum Low Density Parity Check Code , 2001, quant-ph/0108131.

[62]  Hideki Imai,et al.  Quantum Quasi-Cyclic LDPC Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[63]  Lajos Hanzo,et al.  The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure , 2015, IEEE Access.

[64]  L. Goddard Information Theory , 1962, Nature.

[65]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[66]  Richard Cleve Quantum stabilizer codes and classical linear codes , 1997 .

[67]  Gilles Zémor,et al.  Quantum Expander Codes , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[68]  Baoming Bai,et al.  Enhanced Feedback Iterative Decoding of Sparse Quantum Codes , 2009, IEEE Transactions on Information Theory.

[69]  Lajos Hanzo,et al.  Low-Density Parity-Check Codes and Their Rateless Relatives , 2011, IEEE Communications Surveys & Tutorials.

[70]  Henk Wymeersch,et al.  Uniformly reweighted belief propagation: A factor graph approach , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[71]  Alain Couvreur,et al.  A construction of quantum LDPC codes from Cayley graphs , 2011, ISIT.

[72]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[73]  I. Devetak,et al.  Entanglement-assisted quantum quasicyclic low-density parity-check codes , 2008, 0803.0100.

[74]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[75]  Hideki Imai,et al.  Spatially coupled quasi-cyclic quantum LDPC codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[76]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[77]  Hideki Imai,et al.  Quantum Error Correction Beyond the Bounded Distance Decoding Limit , 2010, IEEE Transactions on Information Theory.

[78]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[79]  S. ten Brink,et al.  Code doping for triggering iterative decoding convergence , 2001 .

[80]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[81]  Soon Xin Ng,et al.  Non-Dominated Quantum Iterative Routing Optimization for Wireless Multihop Networks , 2015, IEEE Access.

[82]  Hideki Imai,et al.  Non-binary quasi-cyclic quantum LDPC codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[83]  Christian Kurtsiefer,et al.  LETTER TO THE EDITOR: Secure communication with single-photon two-qubit states , 2001 .

[84]  Jean-Pierre Tillich,et al.  A class of quantum LDPC codes: construction and performances under iterative decoding , 2007, 2007 IEEE International Symposium on Information Theory.

[85]  Jing Li,et al.  Efficient Quantum Stabilizer Codes: LDPC and LDPC-Convolutional Constructions , 2010, IEEE Transactions on Information Theory.

[86]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[87]  Iryna Andriyanova,et al.  A family of quantum codes with performances close to the hashing bound under iterative decoding , 2013, 2013 IEEE International Symposium on Information Theory.

[88]  Robert A. Malaney,et al.  Location-dependent communications using quantum entanglement , 2010, 1003.0949.

[89]  L. Brown Dirac ’ s The Principles of Quantum Mechanics * , 2006 .