Family Ties: Relating Poncelet 3-Periodics by their Properties

We compare loci types and invariants across Poncelet families interscribed in three distinct concentric Ellipse pairs: (i) ellipse-incircle, (ii) circumcircle-inellipse, and (iii) homothetic. Their metric properties are mostly identical to those of 3 well-studied families: elliptic billiard (confocal pair), Chapple’s poristic triangles, and the Brocard porism. We therefore organized them in three related groups.

[1]  Roger A. Johnson,et al.  Modern geometry : an elementary treatise on the geometry of the triangle and the circle , 1929 .

[2]  Dan Reznik,et al.  Related by Similarity II: Poncelet 3-Periodics in the Homothetic Pair and the Brocard Porism , 2020, ArXiv.

[3]  Centers of Mass of Poncelet Polygons, 200 Years After , 2016, 1607.04766.

[4]  Ronaldo Garcia,et al.  Elliptic Billiards and Ellipses Associated to the 3-Periodic Orbits , 2019, Am. Math. Mon..

[5]  Corentin Fierobe,et al.  On the Circumcenters of Triangular Orbits in Elliptic Billiard , 2018, Journal of Dynamical and Control Systems.

[6]  O. Romaskevich,et al.  On the incenters of triangular orbits in elliptic billiard , 2013 .

[7]  S. Tabachnikov,et al.  Billiards in ellipses revisited , 2020, European Journal of Mathematics.

[8]  Dan Reznik,et al.  New Properties of Triangular Orbits in Elliptic Billiards , 2020, ArXiv.

[9]  Vadim Kaloshin,et al.  On the integrability of Birkhoff billiards , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Serge Tabachnikov,et al.  Dan Reznik’s identities and more , 2020 .

[11]  S. Tabachnikov,et al.  Remarks on the Circumcenter of Mass , 2014, 1410.5115.

[12]  Boris Odehnal Poristic Loci of Triangle Centers , 2011 .

[13]  Dan Reznik,et al.  Loci of 3-periodics in an Elliptic Billiard: Why so many ellipses? , 2020, J. Symb. Comput..

[14]  Milena Radnović,et al.  Poncelet Porisms and Beyond: Integrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics , 2011 .

[16]  Dan Reznik,et al.  Fifty New Invariants of N-Periodics in the Elliptic Billiard , 2020, Arnold Mathematical Journal.

[17]  Dan Reznik,et al.  Related by Similiarity: Poristic Triangles and 3-Periodics in the Elliptic Billiard , 2020, ArXiv.

[18]  Dan Reznik,et al.  Can the Elliptic Billiard Still Surprise Us? , 2019, ArXiv.

[19]  M. The Modern Geometry of the Triangle , 1911, Nature.