Using Severe Plastic Deformation to Produce Nanostructured Materials with Superior Properties

,

[1]  W. Srubar,et al.  Biomineralized Materials for Sustainable and Durable Construction , 2022, Annual Review of Materials Research.

[2]  V. V. Popov,et al.  Nanomaterials by severe plastic deformation: review of historical developments and recent advances , 2022, Materials Research Letters.

[3]  R. Valiev,et al.  Ultralow-temperature superplasticity and its novel mechanism in ultrafine-grained Al alloys , 2021, Materials Research Letters.

[4]  C. Schuh,et al.  Stability of nanocrystalline metals: The role of grain-boundary chemistry and structure , 2021, MRS Bulletin.

[5]  Yufeng Zheng,et al.  Precipitation in nanostructured alloys: A brief review , 2021, MRS Bulletin.

[6]  R. Valiev,et al.  Commercialization of bulk nanostructured metals and alloys , 2021, MRS Bulletin.

[7]  R. Valiev,et al.  Development of nanostructured titanium implants for biomedical implants – A short review , 2021 .

[8]  T. Langdon,et al.  Evaluating the paradox of strength and ductility in ultrafine-grained oxygen-free copper processed by ECAP at room temperature , 2020, Materials Science and Engineering: A.

[9]  K. Edalati,et al.  Severe Plastic Deformation for Nanostructure Controls , 2020, MATERIALS TRANSACTIONS.

[10]  A. Vinogradov,et al.  Inhibiting Stress Corrosion Cracking by Removing Corrosion Products from the Mg-Zn-Zr Alloy Pre-Exposed to Corrosion Solutions , 2020, Acta Materialia.

[11]  R. Valiev,et al.  Biofunctionalization of PEO coatings on titanium implants with inorganic and organic substances , 2020 .

[12]  Nanocrystalline Materials , 2020 .

[13]  Yufeng Zheng,et al.  Influence of ultra-fine grain structure on corrosion behaviour of biodegradable Mg-1Ca alloy , 2020, Corrosion Science.

[14]  R. Valiev,et al.  Strength enhancement induced by grain boundary solute segregations in ultrafine-grained alloys , 2019 .

[15]  G. Wilde,et al.  Grain Boundaries and Diffusion Phenomena in Severely Deformed Materials , 2019, MATERIALS TRANSACTIONS.

[16]  R. Valiev,et al.  Developing Nanostructured Metals for Manufacturing of Medical Implants with Improved Design and Biofunctionality , 2019, MATERIALS TRANSACTIONS.

[17]  R. Pippan,et al.  Saturation of Grain Refinement during Severe Plastic Deformation of Single Phase Materials: Reconsiderations, Current Status and Open Questions , 2019, MATERIALS TRANSACTIONS.

[18]  G. Faraji,et al.  An Overview on the Continuous Severe Plastic Deformation Methods , 2019, MATERIALS TRANSACTIONS.

[19]  M. Díez,et al.  Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling , 2019, Journal of Alloys and Compounds.

[20]  F. Witte,et al.  Biodegradable Metals , 2018, Biomaterials Science.

[21]  R. Valiev,et al.  Peculiarities of Interactions of Alloying Elements with Grain Boundaries and the Formation of Segregations in Al–Mg and Al–Zn Alloys , 2018, Physics of Metals and Metallography.

[22]  R. Valiev,et al.  Review on superior strength and enhanced ductility of metallic nanomaterials , 2018 .

[23]  R. Valiev,et al.  Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy , 2018, Scientific Reports.

[24]  Y. Ivanisenko,et al.  The α→ω and β→ω phase transformations in Ti–Fe alloys under high-pressure torsion , 2018 .

[25]  Y. Ivanisenko,et al.  Transformations of α' martensite in Ti–Fe alloys under high pressure torsion , 2017 .

[26]  A. Mazilkin,et al.  Phase transitions in Cu-based alloys under high pressure torsion , 2017 .

[27]  A. Rosochowski Severe Plastic Deformation Technology , 2017 .

[28]  H. Hahn,et al.  High-pressure torsion driven phase transformations in Cu–Al–Ni shape memory alloys , 2017 .

[29]  R. Valiev,et al.  Two-Level Micro-to-Nanoscale Hierarchical TiO2 Nanolayers on Titanium Surface , 2016, Materials.

[30]  Qiang Zhang,et al.  In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP. , 2016, Materials science & engineering. C, Materials for biological applications.

[31]  Y. Ivanisenko,et al.  High Pressure Torsion Extrusion as a new severe plastic deformation process , 2016 .

[32]  T. Langdon,et al.  The Strength–Grain Size Relationship in Ultrafine-Grained Metals , 2016, Metallurgical and Materials Transactions A.

[33]  M. Parsa,et al.  Deformation of Pure Aluminum Along the Groove Path of ECAP‐Conform Process   , 2016 .

[34]  R. Valiev,et al.  Nanostructured Titanium for Maxillofacial Mini‐Implants   , 2016 .

[35]  K. Edalati,et al.  A review on high-pressure torsion (HPT) from 1935 to 1988 , 2016 .

[36]  Y. Estrin,et al.  Fundamentals of Superior Properties in Bulk NanoSPD Materials , 2016 .

[37]  T. Langdon,et al.  Effects of equal-channel angular pressing and accumulative roll-bonding on hydrogen storage properties of a commercial ZK60 magnesium alloy , 2015 .

[38]  R. Valiev,et al.  Recent Findings in Superior Strength and Ductility of Ultrafine-Grained Materials , 2015 .

[39]  R. Valiev,et al.  Formation of Micro- and Nanostructures on the Nanotitanium Surface by Chemical Etching and Deposition of Titania Films by Atomic Layer Deposition (ALD) , 2015, Materials.

[40]  R. Valiev,et al.  Enhanced Mechanical Properties and Electrical Conductivity in Ultrafine-Grained Al 6101 Alloy Processed via ECAP-Conform , 2015 .

[41]  S. Dorozhkin Calcium orthophosphate deposits: Preparation, properties and biomedical applications. , 2015, Materials science & engineering. C, Materials for biological applications.

[42]  R. Valiev,et al.  Bulk Nanostructured Materials with Multifunctional Properties , 2015 .

[43]  R. Valiev,et al.  Recent Advances in Processing and Application of Nanostructured Titanium for Dental Implants , 2015 .

[44]  Y. Ivanisenko,et al.  Phase transitions induced by severe plastic deformation: steady-state and equifinality , 2015 .

[45]  R. Pesci,et al.  Mechanical properties of AZ31B magnesium alloy processed by I-ECAP , 2015 .

[46]  M. Kulczyk,et al.  Influence of Severe Plastic Deformation Induced by HE and ECAP on the Thermo-Physical Properties of Metals , 2015 .

[47]  A. Hohenwarter,et al.  Incremental high pressure torsion as a novel severe plastic deformation process: Processing features and application to copper , 2015, Materials science & engineering. A, Structural materials : properties, microstructure and processing.

[48]  R. Valiev,et al.  Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel , 2014 .

[49]  Yufeng Zheng,et al.  Progress of biodegradable metals , 2014 .

[50]  A. Lugovskoy,et al.  Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys. , 2014, Materials science & engineering. C, Materials for biological applications.

[51]  M. Vedani,et al.  Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications. , 2014, Journal of the mechanical behavior of biomedical materials.

[52]  M. Herbig,et al.  Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces , 2014 .

[53]  R. Valiev,et al.  Fatigue Life and Failure Characteristics of an Ultrafine‐Grained Ti–6Al–4V Alloy Processed by ECAP and Extrusion , 2014 .

[54]  R. Valiev,et al.  Frontiers for Bulk Nanostructured Metals in Biomedical Applications , 2014 .

[55]  Alexey Yu. Smolin,et al.  Nanostructured titanium-based materials for medical implants: Modeling and development , 2014 .

[56]  G. Wallace,et al.  Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings , 2014, International journal of molecular sciences.

[57]  Ali Khademhosseini,et al.  Cell response to nanocrystallized metallic substrates obtained through severe plastic deformation. , 2014, ACS applied materials & interfaces.

[58]  R. Valiev,et al.  Nanostructured Cu-Cr alloy with high strength and electrical conductivity , 2014 .

[59]  Ruslan Z. Valiev,et al.  A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity , 2014 .

[60]  W. Botta,et al.  Hydrogen storage properties of pure Mg after the combined processes of ECAP and cold-rolling , 2014 .

[61]  T. Langdon Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement , 2013 .

[62]  R. Valiev,et al.  Bulk Nanostructured Materials: Fundamentals and Applications , 2013 .

[63]  R. Valiev,et al.  In vitro and in vivo studies on nanocrystalline Ti fabricated by equal channel angular pressing with microcrystalline CP Ti as control. , 2013, Journal of biomedical materials research. Part A.

[64]  Y. Estrin,et al.  Extreme grain refinement by severe plastic deformation: A wealth of challenging science , 2013 .

[65]  R. Pippan,et al.  Generation of metallic nanocomposites by severe plastic deformation , 2013 .

[66]  N. Gao,et al.  Optimizing strength and ductility of Cu-Zn alloys through severe plastic deformation , 2012 .

[67]  R. Valiev,et al.  Effect of cold rolling on microstructure and mechanical properties of copper subjected to ECAP with various numbers of passes , 2012 .

[68]  Yan Hu,et al.  Regulation of the behaviors of mesenchymal stem cells by surface nanostructured titanium. , 2012, Colloids and surfaces. B, Biointerfaces.

[69]  Ling Qin,et al.  Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[70]  T. Langdon,et al.  Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling , 2012, Journal of Materials Science.

[71]  T. Langdon,et al.  Microstructure and microtexture evolution in pure metals after ultra-high straining , 2012, Journal of Materials Science.

[72]  R. Valiev,et al.  Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena , 2012, 1203.6496.

[73]  S. Ringer,et al.  Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy. , 2011, Ultramicroscopy.

[74]  Zaoli Zhang,et al.  Deformation mechanisms of a modified 316L austenitic steel subjected to high pressure torsion , 2011 .

[75]  L. Olejnik,et al.  Incremental Equal Channel Angular Pressing for Grain Refinement , 2011 .

[76]  Y. Estrin,et al.  Accelerated stem cell attachment to ultrafine grained titanium. , 2011, Acta biomaterialia.

[77]  R. Valiev,et al.  Processing of nanostructured metals and alloys via plastic deformation , 2010 .

[78]  R. Valiev,et al.  On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation , 2010, 1010.4644.

[79]  E. Lavernia,et al.  Nanostructural hierarchy increases the strength of aluminium alloys. , 2010, Nature communications.

[80]  A Caron,et al.  Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation. , 2010, Acta biomaterialia.

[81]  R. Lapovok,et al.  ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: microstructure , 2010 .

[82]  K. Edalati,et al.  Continuous high-pressure torsion , 2010 .

[83]  Patrick B. Berbon,et al.  Principles of ECAP–Conform as a continuous process for achieving grain refinement: Application to an aluminum alloy , 2010 .

[84]  C. Xie,et al.  Microstructures and mechanical deformation behaviors of ultrafine-grained commercial pure (grade 3) Ti processed by two-step severe plastic deformation , 2009 .

[85]  S. Ringer,et al.  An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing , 2009 .

[86]  C. Park,et al.  Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. , 2009, Acta biomaterialia.

[87]  R. Lapovok,et al.  Accelerated growth of preosteoblastic cells on ultrafine grained titanium. , 2009, Journal of biomedical materials research. Part A.

[88]  C. Koch Nanostructured Materials: An Overview , 2009 .

[89]  E. Lavernia,et al.  Deformation Mechanisms of Nanostructured Materials , 2009 .

[90]  I. Beyerlein,et al.  Texture evolution in equal-channel angular extrusion , 2009 .

[91]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[92]  K. Lu,et al.  Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale , 2009, Science.

[93]  R. Andrievski,et al.  Strength of nanostructures , 2009 .

[94]  Z. Horita,et al.  Development of High-Pressure Sliding Process for Microstructural Refinement of Rectangular Metallic Sheets , 2009 .

[95]  K. Edalati,et al.  Using ring samples to evaluate the processing characteristics in high-pressure torsion , 2009 .

[96]  M. Zehetbauer,et al.  Bulk nanostructured materials , 2009 .

[97]  D. Ferguson,et al.  A look at physical simulation of metallurgical processes, past, present and future , 2009 .

[98]  Terence G. Langdon,et al.  Using high-pressure torsion for metal processing: Fundamentals and applications , 2008 .

[99]  V. V. Latysh,et al.  Nanostructured Titanium for Biomedical Applications , 2008 .

[100]  Z. Fogarassy,et al.  Microstructure and Mechanical Behavior of Ultrafine-Grained Titanium , 2008 .

[101]  R. Valiev,et al.  Nanostructure and related mechanical properties of an Al–Mg–Si alloy processed by severe plastic deformation , 2008, 0808.3715.

[102]  Z. Horita,et al.  Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion , 2008 .

[103]  B. B. Panigrahi,et al.  In vitro fibroblast response to ultra fine grained titanium produced by a severe plastic deformation process , 2008, Journal of materials science. Materials in medicine.

[104]  Evan Ma,et al.  Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation , 2007 .

[105]  M. Tabrizian,et al.  Nanostructuring of a Titanium Material by High‐Pressure Torsion Improves Pre‐Osteoblast Attachment , 2007 .

[106]  A. Sergueeva,et al.  Simultaneously Increasing the Ductility and Strength of Ultra‐Fine‐Grained Pure Copper , 2006 .

[107]  R. Valiev,et al.  Principles of equal-channel angular pressing as a processing tool for grain refinement , 2006 .

[108]  Yuri Estrin,et al.  Producing bulk ultrafine-grained materials by severe plastic deformation , 2006 .

[109]  R. Valiev,et al.  Microstructure and Properties of Ti Rods Produced by Multi-Step SPD , 2006 .

[110]  P. Chu,et al.  Surface modification of titanium, titanium alloys, and related materials for biomedical applications , 2004 .

[111]  R. Valiev,et al.  Continuous processing of ultrafine grained Al by ECAP–Conform , 2004 .

[112]  R. Valiev,et al.  Nanostructuring of metals by severe plastic deformation for advanced properties , 2004, Nature materials.

[113]  Yu. R. Kolobov,et al.  Grain Boundary Diffusion and Mechanisms of Creep of Nanostructured Metals , 2002 .

[114]  K E Tanner,et al.  Titanium in Medicine , 2002 .

[115]  R. Valiev,et al.  Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation , 2002 .

[116]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[117]  V. Stolyarov,et al.  A two step SPD processing of ultrafine-grained titanium , 1999 .

[118]  David J. Smith,et al.  An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy , 1996 .

[119]  Thomas W. Eagar,et al.  Bringing new materials to market , 1995 .

[120]  R. Valiev,et al.  An investigation of ductility and microstructural evolution in an Al−3% Mg alloy with submicron grain size , 1993 .

[121]  R. Valiev,et al.  Low-temperature superplasticity of metallic materials , 1988 .

[122]  Percy Williams Bridgman,et al.  Effects of High Shearing Stress Combined with High Hydrostatic Pressure , 1935 .

[123]  R. Valiev,et al.  Nanostructured commercially pure titanium for development of miniaturized biomedical implants , 2018 .

[124]  A. Mazilkin,et al.  Competition between precipitation and dissolution in Cu–Ag alloys under high pressure torsion , 2017 .

[125]  R. Valiev,et al.  Nanostructured Al and Cu alloys with superior strength and electrical conductivity , 2015, Journal of Materials Science.

[126]  T. Langdon,et al.  Review: Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures , 2015, Journal of Materials Science.

[127]  V. Sursaeva,et al.  Review: grain boundary faceting–roughening phenomena , 2015, Journal of Materials Science.

[128]  R. Valiev,et al.  Development and study of medical implants made from nanostructured titanium , 2015 .

[129]  I. Sabirov,et al.  PHYSICAL SIMULATION OF COLD ROLLING OF ULTRA-FINE GRAINED AL 5083 ALLOY TO STUDY MICROSTRUCTURE EVOLUTION , 2013 .

[130]  Berend Denkena,et al.  Biodegradable magnesium implants for orthopedic applications , 2012, Journal of Materials Science.

[131]  Xiaolei Wu,et al.  Deformation twinning in nanocrystalline materials , 2012 .

[132]  K. Edalati,et al.  Continuous high-pressure torsion using wires , 2011, Journal of Materials Science.

[133]  R. Valiev,et al.  Towards superstrength of nanostructured metals and alloys processed by SPD , 2011 .

[134]  R. Valiev,et al.  Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route , 2011 .

[135]  S. Whang Nanostructured metals and alloys : processing, microstructure, mechanical properties and applications , 2011 .

[136]  C. Elias Titanium dental implant surfaces , 2010 .

[137]  R. Valiev,et al.  Grain Refinement and Mechanical Behavior of the Al Alloy, Subjected to the New SPD Technique , 2009 .

[138]  K. Edalati,et al.  Scaling-Up of High Pressure Torsion Using Ring Shape , 2009 .

[139]  Rajakrishnan Rajkumar,et al.  Grammar Engineering for CCG using Ant and XSLT ∗ , 2001 .

[140]  Khan,et al.  Effects of , 2000, The Journal of organic chemistry.

[141]  H. Gleiter,et al.  Nanostructured materials: basic concepts and microstructure☆ , 2000 .

[142]  R. Valiev,et al.  Investigations and applications of severe plastic deformation , 2000 .