An evolutionary algorithm for clustering data streams with a variable number of clusters
暂无分享,去创建一个
[1] Alex Alves Freitas,et al. A Survey of Evolutionary Algorithms for Clustering , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).
[2] Rodrigo Fernandes de Mello,et al. Data stream dynamic clustering supported by Markov chain isomorphisms , 2013, Intell. Data Anal..
[3] Eyke Hüllermeier,et al. Online clustering of parallel data streams , 2006, Data Knowl. Eng..
[4] Adam Meyerson,et al. Fast and Accurate k-means For Large Datasets , 2011, NIPS.
[5] Piotr Indyk,et al. Approximate clustering via core-sets , 2002, STOC '02.
[6] Sudipto Guha,et al. Clustering Data Streams: Theory and Practice , 2003, IEEE Trans. Knowl. Data Eng..
[7] Ahmed Albatineh,et al. On Similarity Indices and Correction for Chance Agreement , 2006, J. Classif..
[8] Jesús S. Aguilar-Ruiz,et al. Knowledge discovery from data streams , 2009, Intell. Data Anal..
[9] Philip S. Yu,et al. A Framework for Projected Clustering of High Dimensional Data Streams , 2004, VLDB.
[10] Ricardo J. G. B. Campello,et al. Evolutionary algorithms for clustering gene-expression data , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).
[11] Ricardo J. G. B. Campello,et al. Relative clustering validity criteria: A comparative overview , 2010 .
[12] Peter J. Rousseeuw,et al. Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .
[13] Ricardo J. G. B. Campello,et al. Towards a Fast Evolutionary Algorithm for Clustering , 2006, 2006 IEEE International Conference on Evolutionary Computation.
[14] Eduardo R. Hruschka,et al. Extending k-Means-Based Algorithms for Evolving Data Streams with Variable Number of Clusters , 2011, 2011 10th International Conference on Machine Learning and Applications and Workshops.
[15] Xindong Wu,et al. Robust ensemble learning for mining noisy data streams , 2011, Decis. Support Syst..
[16] Philip S. Yu,et al. A Framework for Clustering Evolving Data Streams , 2003, VLDB.
[17] Jiawei Han,et al. Data Mining: Concepts and Techniques , 2000 .
[18] Vipin Kumar,et al. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series , 2008 .
[19] Ricardo J. G. B. Campello,et al. Evolving clusters in gene-expression data , 2006, Inf. Sci..
[20] Matjaz Gams,et al. An Agent-Based Approach to Care in Independent Living , 2010, AmI.
[21] Gerardo Beni,et al. A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[22] Michael R. Anderberg,et al. Cluster Analysis for Applications , 1973 .
[23] Anil K. Jain,et al. Algorithms for Clustering Data , 1988 .
[24] João Gama,et al. Monitoring Incremental Histogram Distribution for Change Detection in Data Streams , 2008, KDD Workshop on Knowledge Discovery from Sensor Data.
[25] Moamar Sayed Mouchaweh,et al. Learning in Dynamic Environments: Application to the Identification of Hybrid Dynamic Systems , 2010, 2010 Ninth International Conference on Machine Learning and Applications.
[26] Christian Sohler,et al. StreamKM++: A clustering algorithm for data streams , 2010, JEAL.
[27] James C. Bezdek,et al. On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..
[28] Geoff Holmes,et al. MOA: Massive Online Analysis , 2010, J. Mach. Learn. Res..
[29] Tian Zhang,et al. BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.
[30] Sergei Vassilvitskii,et al. Scalable K-Means by ranked retrieval , 2014, WSDM.
[31] Li Tu,et al. Density-based clustering for real-time stream data , 2007, KDD '07.
[32] Saeed Shahrivari,et al. High performance parallel $$k$$k-means clustering for disk-resident datasets on multi-core CPUs , 2014, The Journal of Supercomputing.
[33] Nir Ailon,et al. Streaming k-means approximation , 2009, NIPS.
[34] Ricardo J. G. B. Campello,et al. Comparison Among Methods for k Estimation in k-means , 2009, 2009 Ninth International Conference on Intelligent Systems Design and Applications.
[35] George Karypis,et al. A Comparison of Document Clustering Techniques , 2000 .
[36] João Gama,et al. A survey on concept drift adaptation , 2014, ACM Comput. Surv..
[37] Sergei Vassilvitskii,et al. k-means++: the advantages of careful seeding , 2007, SODA '07.
[38] H. Mouss,et al. Test of Page-Hinckley, an approach for fault detection in an agro-alimentary production system , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).
[39] Edwin Lughofer,et al. Identifying static and dynamic prediction models for NOx emissions with evolving fuzzy systems , 2011, Appl. Soft Comput..
[40] A. E. Eiben,et al. Introduction to Evolutionary Computing , 2003, Natural Computing Series.
[41] Sudipto Guha,et al. Streaming-data algorithms for high-quality clustering , 2002, Proceedings 18th International Conference on Data Engineering.
[42] Pankaj K. Agarwal,et al. Approximating extent measures of points , 2004, JACM.
[43] Ricardo J. G. B. Campello,et al. Fast Evolutionary Algorithms for Relational Clustering , 2009, 2009 Ninth International Conference on Intelligent Systems Design and Applications.
[44] Anil K. Jain. Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..
[45] Lei Wang,et al. A collaborative divide-and-conquer K-means clustering algorithm for processing large data , 2014, Conf. Computing Frontiers.
[46] Brian Everitt,et al. Cluster analysis , 1974 .
[47] André Carlos Ponce de Leon Ferreira de Carvalho,et al. Efficiency issues of evolutionary k-means , 2011, Appl. Soft Comput..
[48] André Carlos Ponce de Leon Ferreira de Carvalho,et al. Data stream clustering: A survey , 2013, CSUR.
[49] Philip S. Yu,et al. Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.
[50] Edwin Lughofer. A dynamic split-and-merge approach for evolving cluster models , 2012, Evol. Syst..
[51] Bhavani M. Thuraisingham,et al. Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints , 2011, IEEE Transactions on Knowledge and Data Engineering.
[52] Emanuel Falkenauer,et al. Genetic Algorithms and Grouping Problems , 1998 .