Supersymmetry Approach to Wishart Correlation Matrices: Exact Results

We calculate the ‘one-point function’, meaning the marginal probability density function for any single eigenvalue, of real and complex Wishart correlation matrices. No explicit expression had been obtained for the real case so far. We succeed in doing so by using supersymmetry techniques to express the one-point function of real Wishart correlation matrices as a twofold integral. The result can be viewed as a resummation of a series of Jack polynomials in a non-trivial case. We illustrate our formula by numerical simulations. We also rederive a known expression for the one-point function of complex Wishart correlation matrices.

[1]  A. Kirillov,et al.  Introduction to Superanalysis , 1987 .

[2]  J. Bouchaud,et al.  Noise Dressing of Financial Correlation Matrices , 1998, cond-mat/9810255.

[3]  J. Verbaarschot,et al.  Grassmann integration in stochastic quantum physics: The case of compound-nucleus scattering , 1985 .

[4]  H. Sommers,et al.  Superbosonization of Invariant Random Matrix Ensembles , 2007, 0707.2929.

[5]  J. Verbaarschot,et al.  The supersymmetric method in random matrix theory and applications to QCD , 2004 .

[6]  J. Baik,et al.  The Oxford Handbook of Random Matrix Theory , 2011 .

[7]  Mathias Fink,et al.  Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems , 2008 .

[8]  T. Guhr Supersymmetry in Random Matrix Theory , 2010, 1005.0979.

[9]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[10]  Spectrum of the QCD Dirac operator and chiral random matrix theory. , 1994, Physical review letters.

[11]  Arbitrary unitarily invariant random matrix ensembles and supersymmetry , 2006, math-ph/0606014.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  F. Haake Quantum signatures of chaos , 1991 .

[14]  Yan V Fyodorov Negative moments of characteristic polynomials of random matrices: Ingham–Siegel integral as an alternative to Hubbard–Stratonovich transformation , 2002 .

[15]  R. Lourie,et al.  The Statistical Mechanics of Financial Markets , 2002 .

[16]  M. Bowick,et al.  The statistical mechanics of membranes , 2000, cond-mat/0002038.

[17]  S. Verdú,et al.  Capacity of MIMO channels with one-sided correlation , 2004, Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications - Programme and Book of Abstracts (IEEE Cat. No.04TH8738).

[18]  C. Itzykson,et al.  The planar approximation. II , 1980 .

[19]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[20]  H. Weyl The Classical Groups , 1940 .

[21]  C. Ross Found , 1869, The Dental register.

[22]  T. Guhr,et al.  Arbitrary rotation invariant random matrix ensembles and supersymmetry: orthogonal and unitary-symplectic case , 2009, 0905.3253.

[23]  T. Guhr,et al.  A comparison of the superbosonization formula and the generalized Hubbard–Stratonovich transformation , 2009, 0905.3256.

[24]  K. Efetov,et al.  Supersymmetry in Disorder and Chaos , 1996 .

[25]  Thomas Guhr,et al.  Eigenvalue densities of real and complex Wishart correlation matrices. , 2010, Physical review letters.

[26]  Vinayak,et al.  Correlated Wishart ensembles and chaotic time series. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Riemannian symmetric superspaces and their origin in random‐matrix theory , 1996, math-ph/9808012.