Supersymmetry Approach to Wishart Correlation Matrices: Exact Results
暂无分享,去创建一个
Thomas Guhr | Mario Kieburg | Martin R. Zirnbauer | T. Guhr | M. Kieburg | C. Récher | M. Zirnbauer | Christian Recher
[1] A. Kirillov,et al. Introduction to Superanalysis , 1987 .
[2] J. Bouchaud,et al. Noise Dressing of Financial Correlation Matrices , 1998, cond-mat/9810255.
[3] J. Verbaarschot,et al. Grassmann integration in stochastic quantum physics: The case of compound-nucleus scattering , 1985 .
[4] H. Sommers,et al. Superbosonization of Invariant Random Matrix Ensembles , 2007, 0707.2929.
[5] J. Verbaarschot,et al. The supersymmetric method in random matrix theory and applications to QCD , 2004 .
[6] J. Baik,et al. The Oxford Handbook of Random Matrix Theory , 2011 .
[7] Mathias Fink,et al. Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems , 2008 .
[8] T. Guhr. Supersymmetry in Random Matrix Theory , 2010, 1005.0979.
[9] T. Guhr,et al. RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.
[10] Spectrum of the QCD Dirac operator and chiral random matrix theory. , 1994, Physical review letters.
[11] Arbitrary unitarily invariant random matrix ensembles and supersymmetry , 2006, math-ph/0606014.
[12] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[13] F. Haake. Quantum signatures of chaos , 1991 .
[14] Yan V Fyodorov. Negative moments of characteristic polynomials of random matrices: Ingham–Siegel integral as an alternative to Hubbard–Stratonovich transformation , 2002 .
[15] R. Lourie,et al. The Statistical Mechanics of Financial Markets , 2002 .
[16] M. Bowick,et al. The statistical mechanics of membranes , 2000, cond-mat/0002038.
[17] S. Verdú,et al. Capacity of MIMO channels with one-sided correlation , 2004, Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications - Programme and Book of Abstracts (IEEE Cat. No.04TH8738).
[18] C. Itzykson,et al. The planar approximation. II , 1980 .
[19] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[20] H. Weyl. The Classical Groups , 1940 .
[21] C. Ross. Found , 1869, The Dental register.
[22] T. Guhr,et al. Arbitrary rotation invariant random matrix ensembles and supersymmetry: orthogonal and unitary-symplectic case , 2009, 0905.3253.
[23] T. Guhr,et al. A comparison of the superbosonization formula and the generalized Hubbard–Stratonovich transformation , 2009, 0905.3256.
[24] K. Efetov,et al. Supersymmetry in Disorder and Chaos , 1996 .
[25] Thomas Guhr,et al. Eigenvalue densities of real and complex Wishart correlation matrices. , 2010, Physical review letters.
[26] Vinayak,et al. Correlated Wishart ensembles and chaotic time series. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[27] Riemannian symmetric superspaces and their origin in random‐matrix theory , 1996, math-ph/9808012.