FTD and ALS—translating mouse studies into clinical trials

[1]  J. Rothstein,et al.  Rodent Models of Amyotrophic Lateral Sclerosis , 2015, Current protocols in pharmacology.

[2]  A. Ittner,et al.  Tau‐targeting passive immunization modulates aspects of pathology in tau transgenic mice , 2015, Journal of neurochemistry.

[3]  J. V. van Swieten,et al.  A new inducible transgenic mouse model for C9orf72-associated GGGGCC repeat expansion supports a gain-of-function mechanism in C9orf72-associated ALS and FTD , 2014, Acta neuropathologica communications.

[4]  J. Hodges,et al.  Systemic metabolism in frontotemporal dementia , 2014, Neurology.

[5]  R. Conwit,et al.  Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: a multi-stage, randomised, double-blind, placebo-controlled trial , 2014, The Lancet Neurology.

[6]  W. Robberecht,et al.  The phenotypic variability of amyotrophic lateral sclerosis , 2014, Nature Reviews Neurology.

[7]  A. Ittner,et al.  p38 MAP kinase-mediated NMDA receptor-dependent suppression of hippocampal hypersynchronicity in a mouse model of Alzheimer’s disease , 2014, Acta neuropathologica communications.

[8]  Crystal Davis,et al.  C57BL/6J congenic Prp-TDP43A315T mice develop progressive neurodegeneration in the myenteric plexus of the colon without exhibiting key features of ALS , 2014, Brain Research.

[9]  Jacob I. Ayers,et al.  Experimental transmissibility of mutant SOD1 motor neuron disease , 2014, Acta Neuropathologica.

[10]  O. Hendrich,et al.  C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins , 2014, Science.

[11]  Stuart Maudsley,et al.  Systems-Level G Protein-Coupled Receptor Therapy Across a Neurodegenerative Continuum by the GLP-1 Receptor System , 2014, Front. Endocrinol..

[12]  Alexander Gerhard,et al.  Frontotemporal dementia and its subtypes: a genome-wide association study , 2014, The Lancet Neurology.

[13]  L. Grinberg,et al.  Distinct Tau Prion Strains Propagate in Cells and Mice and Define Different Tauopathies , 2014, Neuron.

[14]  W. Robberecht,et al.  Prevention of intestinal obstruction reveals progressive neurodegeneration in mutant TDP-43 (A315T) mice , 2014, Molecular Neurodegeneration.

[15]  L. Ittner,et al.  Inducible, tightly regulated and non-leaky neuronal gene expression in mice , 2014, Transgenic Research.

[16]  J. Hodges,et al.  Frontotemporal dementia associated with the C9ORF72 mutation: a unique clinical profile. , 2014, JAMA neurology.

[17]  Zeshan Ahmed,et al.  A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity , 2014, Acta Neuropathologica.

[18]  J. Winderickx,et al.  Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies , 2014, Acta neuropathologica communications.

[19]  L. Petrucelli,et al.  Divergent Phenotypes in Mutant TDP-43 Transgenic Mice Highlight Potential Confounds in TDP-43 Transgenic Modeling , 2014, PloS one.

[20]  L. Petrucelli,et al.  Mechanisms of toxicity in C9FTLD/ALS , 2014, Acta Neuropathologica.

[21]  Brian J. Bacskai,et al.  Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo , 2013, Proceedings of the National Academy of Sciences.

[22]  D. Holtzman,et al.  Anti-Tau Antibodies that Block Tau Aggregate Seeding In Vitro Markedly Decrease Pathology and Improve Cognition In Vivo , 2013, Neuron.

[23]  Nipun A. Mistry,et al.  RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention , 2013, Neuron.

[24]  P. Gordon The murky path to drug discovery in ALS becomes clearer , 2013, The Lancet Neurology.

[25]  W. Wurst,et al.  Highly Efficient Targeted Mutagenesis in Mice Using TALENs , 2013, Genetics.

[26]  Gene W. Yeo,et al.  Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration , 2013, Proceedings of the National Academy of Sciences.

[27]  L. Petrucelli,et al.  Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion , 2013, Science Translational Medicine.

[28]  Isidro Ferrer,et al.  Globular glial tauopathies (GGT): consensus recommendations , 2013, Acta Neuropathologica.

[29]  L. Petrucelli,et al.  c9RAN translation: a potential therapeutic target for the treatment of amyotrophic lateral sclerosis and frontotemporal dementia , 2013, Expert opinion on therapeutic targets.

[30]  D. Cleveland,et al.  Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis , 2013, Neuron.

[31]  R. Jaenisch,et al.  One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[32]  F. LaFerla,et al.  Neuronal-specific overexpression of a mutant valosin-containing protein associated with IBMPFD promotes aberrant ubiquitin and TDP-43 accumulation and cognitive dysfunction in transgenic mice. , 2013, The American journal of pathology.

[33]  Murray Grossman,et al.  Stages of pTDP‐43 pathology in amyotrophic lateral sclerosis , 2013, Annals of neurology.

[34]  Victoria Del Gaizo Moore,et al.  Characterization of early pathogenesis in the SOD1G93A mouse model of ALS: part II, results and discussion , 2013, Brain and behavior.

[35]  B. Ghetti,et al.  Brain homogenates from human tauopathies induce tau inclusions in mouse brain , 2013, Proceedings of the National Academy of Sciences.

[36]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[37]  A. Pestronk,et al.  An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study , 2013, The Lancet Neurology.

[38]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[39]  C. van Broeckhoven,et al.  Overexpression of ALS-Associated p.M337V Human TDP-43 in Mice Worsens Disease Features Compared to Wild-type Human TDP-43 Mice , 2013, Molecular Neurobiology.

[40]  M. Swash,et al.  Controversies and priorities in amyotrophic lateral sclerosis , 2013, The Lancet Neurology.

[41]  C. van Broeckhoven,et al.  Distinct clinical characteristics of C9orf72 expansion carriers compared with GRN, MAPT, and nonmutation carriers in a Flanders-Belgian FTLD cohort. , 2013, JAMA neurology.

[42]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.

[43]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[44]  M. Kiaei,et al.  Premature death of TDP‐43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis , 2013, International journal of experimental pathology.

[45]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[46]  V. Kimonis,et al.  A progressive translational mouse model of human valosin‐containing protein disease: The VCPR155H/+ mouse , 2013, Muscle & nerve.

[47]  J. Trojanowski,et al.  Synthetic Tau Fibrils Mediate Transmission of Neurofibrillary Tangles in a Transgenic Mouse Model of Alzheimer's-Like Tauopathy , 2013, The Journal of Neuroscience.

[48]  Richard D Emes,et al.  Synaptic scaffold evolution generated components of vertebrate cognitive complexity , 2012, Nature Neuroscience.

[49]  Matthew J. Higgins,et al.  Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models , 2012, Nature Genetics.

[50]  T. Hortobágyi,et al.  Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion , 2012, Acta Neuropathologica.

[51]  S. Carothers,et al.  The Importance of Preclinical Trial Timing – a Potential Reason for the Disconnect between mouse Studies and Human Clinical Trials in ALS , 2012, CNS neuroscience & therapeutics.

[52]  S. Pereson,et al.  Cellular ageing, increased mortality and FTLD‐TDP‐associated neuropathology in progranulin knockout mice , 2012, The Journal of pathology.

[53]  C. van Broeckhoven,et al.  The genetics and neuropathology of frontotemporal lobar degeneration , 2012, Acta Neuropathologica.

[54]  A. Al-Chalabi,et al.  The genetics and neuropathology of amyotrophic lateral sclerosis , 2012, Acta Neuropathologica.

[55]  V. Kimonis,et al.  Slow development of ALS-like spinal cord pathology in mutant valosin-containing protein gene knock-in mice , 2012, Cell Death and Disease.

[56]  L. Petrucelli,et al.  Progranulin: An emerging target for FTLD therapies , 2012, Brain Research.

[57]  T. Yokota,et al.  Can regional spreading of amyotrophic lateral sclerosis motor symptoms be explained by prion-like propagation? , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[58]  Edward O. Mann,et al.  Inhibitory Interneuron Deficit Links Altered Network Activity and Cognitive Dysfunction in Alzheimer Model , 2012, Cell.

[59]  L. Petrucelli,et al.  Neuronal sensitivity to TDP-43 overexpression is dependent on timing of induction , 2012, Acta Neuropathologica.

[60]  G. Elder,et al.  Modeling human neurodegenerative diseases in transgenic systems , 2012, Human Genetics.

[61]  J. Collinge,et al.  Progressive neuronal inclusion formation and axonal degeneration in CHMP2B mutant transgenic mice. , 2012, Brain : a journal of neurology.

[62]  Naruhiko Sahara,et al.  Propagation of Tau Pathology in a Model of Early Alzheimer's Disease , 2012, Neuron.

[63]  L. Raymond,et al.  Synaptic dysfunction in progranulin-deficient mice , 2012, Neurobiology of Disease.

[64]  Menno P. Witter,et al.  Trans-Synaptic Spread of Tau Pathology In Vivo , 2012, PloS one.

[65]  N. Cairns,et al.  Core features of frontotemporal dementia recapitulated in progranulin knockout mice , 2012, Neurobiology of Disease.

[66]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[67]  A. Ittner,et al.  Tau-Targeted Immunization Impedes Progression of Neurofibrillary Histopathology in Aged P301L Tau Transgenic Mice , 2011, PloS one.

[68]  J. Trojanowski,et al.  Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration , 2011, Nature Reviews Neuroscience.

[69]  Matthew C. Kiernan,et al.  Clinical diagnosis and management of amyotrophic lateral sclerosis , 2011, Nature Reviews Neurology.

[70]  D. Cleveland,et al.  The Seeds of Neurodegeneration: Prion-like Spreading in ALS , 2011, Cell.

[71]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[72]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[73]  Martin R. Turner,et al.  Biomarkers in amyotrophic lateral sclerosis: opportunities and limitations , 2011, Nature Reviews Neurology.

[74]  J. Julien,et al.  Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. , 2011, Brain : a journal of neurology.

[75]  P. Davies,et al.  Passive Immunization with Anti-Tau Antibodies in Two Transgenic Models , 2011, The Journal of Biological Chemistry.

[76]  Daniel H. Geschwind,et al.  The Human Brain in a Dish: The Promise of iPSC-Derived Neurons , 2011, Cell.

[77]  O. Hardiman,et al.  Amyotrophic lateral sclerosis , 2011, The Lancet.

[78]  J. Kriz,et al.  Treatment with minocycline after disease onset alters astrocyte reactivity and increases microgliosis in SOD1 mutant mice , 2011, Experimental Neurology.

[79]  Rudi D'Hooge,et al.  Tau-Induced Defects in Synaptic Plasticity, Learning, and Memory Are Reversible in Transgenic Mice after Switching Off the Toxic Tau Mutant , 2011, The Journal of Neuroscience.

[80]  J. Trojanowski,et al.  Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. , 2011, The Journal of clinical investigation.

[81]  N. Cairns,et al.  Distinct pathological subtypes of FTLD-FUS , 2011, Acta Neuropathologica.

[82]  M. Beal,et al.  Behavioral deficits and progressive neuropathology in progranulin‐deficient mice: a mouse model of frontotemporal dementia , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[83]  D. Burns,et al.  Progressive motor weakness in transgenic mice expressing human TDP-43 , 2010, Neurobiology of Disease.

[84]  D. Wallace,et al.  VCP Associated Inclusion Body Myopathy and Paget Disease of Bone Knock-In Mouse Model Exhibits Tissue Pathology Typical of Human Disease , 2010, PloS one.

[85]  I. Mackenzie,et al.  TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia , 2010, The Lancet Neurology.

[86]  L. Petrucelli,et al.  Wild-Type Human TDP-43 Expression Causes TDP-43 Phosphorylation, Mitochondrial Aggregation, Motor Deficits, and Early Mortality in Transgenic Mice , 2010, The Journal of Neuroscience.

[87]  N. Grigoriadis,et al.  Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice , 2010, Experimental Neurology.

[88]  J. Kril,et al.  Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models , 2010, Proceedings of the National Academy of Sciences.

[89]  A. Wright,et al.  Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. , 2010, Human molecular genetics.

[90]  M. Diamond,et al.  Prion-like mechanisms in neurodegenerative diseases , 2010, Nature Reviews Neuroscience.

[91]  S. Pereson,et al.  TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration , 2010, Proceedings of the National Academy of Sciences.

[92]  M. J. Fresnadillo Martínez,et al.  Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions , 2010, Nature Genetics.

[93]  C. Iadecola,et al.  Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice , 2010, The Journal of experimental medicine.

[94]  N. Cairns,et al.  TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration , 2009, Proceedings of the National Academy of Sciences.

[95]  Martin Beibel,et al.  Transmission and spreading of tauopathy in transgenic mouse brain , 2009, Nature Cell Biology.

[96]  B. Dubois,et al.  TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration , 2009, Annals of neurology.

[97]  Jürgen Götz,et al.  Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia , 2008, Proceedings of the National Academy of Sciences.

[98]  J. Götz,et al.  Animal models of Alzheimer's disease and frontotemporal dementia , 2008, Nature Reviews Neuroscience.

[99]  J. E. Kranz,et al.  Design, power, and interpretation of studies in the standard murine model of ALS , 2008, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[100]  H. Mitsumoto,et al.  Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial , 2007, The Lancet Neurology.

[101]  Ayodeji A. Asuni,et al.  Immunotherapy Targeting Pathological Tau Conformers in a Tangle Mouse Model Reduces Brain Pathology with Associated Functional Improvements , 2007, The Journal of Neuroscience.

[102]  Sara E. Miller,et al.  Transgenic expression of inclusion body myopathy associated mutant p97/VCP causes weakness and ubiquitinated protein inclusions in mice. , 2007, Human molecular genetics.

[103]  C. Duijn,et al.  Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.

[104]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[105]  G. Skibinski Mutations in the ESCRTIII endosomal complex protein CHMP2B associate with frontotemporal dementia , 2005 .

[106]  P. Fisher,et al.  β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression , 2005, Nature.

[107]  J. Hodges,et al.  Clinicopathological correlates in frontotemporal dementia , 2004, Annals of neurology.

[108]  A. Pestronk,et al.  Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein , 2004, Nature Genetics.

[109]  J. Julien,et al.  Minocycline Slows Disease Progression in a Mouse Model of Amyotrophic Lateral Sclerosis , 2002, Neurobiology of Disease.

[110]  J. Rothstein,et al.  Models of Amyotrophic Lateral Sclerosis , 2002, Current protocols in neuroscience.

[111]  A Klug,et al.  Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[112]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[113]  G. Schellenberg,et al.  Tau is a candidate gene for chromosome 17 frontotemporal dementia , 1998, Annals of neurology.

[114]  D. Borchelt,et al.  ALS-Linked SOD1 Mutant G85R Mediates Damage to Astrocytes and Promotes Rapidly Progressive Disease with SOD1-Containing Inclusions , 1997, Neuron.

[115]  M. Gurney,et al.  Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis , 1996, Annals of neurology.

[116]  D. Borchelt,et al.  An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria , 1995, Neuron.

[117]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[118]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[119]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[120]  李春岩 HO-1 induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice , 2012 .

[121]  M. Festing Improving toxicity screening and drug development by using genetically defined strains. , 2010, Methods in molecular biology.

[122]  Alexandra Flemming,et al.  Infectious disease: Unravelling SARS lethality , 2005, Nature Reviews Drug Discovery.

[123]  Jada Lewis Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein , 2000, Nature Genetics.