Theoferometer for the construction of precision optomechanical assemblies

The increasing difficulty of metrology requirements on projects involving optics and the alignment of instrumentation on spacecraft has reached a turning point. Requirements as low as 0.1 arcseconds for the static, rotational alignment of components within a coordinate system cannot be met with a theodolite, the alignment tool currently in use. The 1"theoferometer" is an interferometer mounted on a rotation stage with degrees of freedom in azimuth and elevation for metrology and alignment applications. The success of a prototype theoferometer in approaching these metrology requirements led to a redesign stressing mechanical, optical, and software changes to increase the sensitivity and portability of the unit. This paper covers the characteristic testing of the first prototype, improvements made to design a second prototype, and planned demonstration of the redesigned theoferometer's capabilities as a "theodolite replacement" and low-uncertainty metrology tool.