Local indentation modulus characterization of diamondlike carbon films by atomic force acoustic microscopy two contact resonance frequencies imaging technique

Two contact resonance frequencies atomic force acoustic microscopy imaging technique has been used to evaluate local indentation modulus of a diamondlike carbon film deposited on a molybdenum foil by laser ablation from glassy carbon target. Acoustic images were obtained by measuring both first and second contact resonance frequency at each point of the scanned area, and then numerically evaluating local contact stiffness and reconstructing an indentation modulus bidimensional pattern. The wide difference of the indentation modulus values allows to detect the presence of residual glassy carbon agglomerates in the diamondlike carbon film.

[1]  Burnham,et al.  Probing the surface forces of monolayer films with an atomic-force microscope. , 1990, Physical review letters.

[2]  N. Savvides,et al.  Microhardness and Young’s modulus of diamond and diamondlike carbon films , 1992 .

[3]  Mikio Muraoka Sensitivity-enhanced atomic force acoustic microscopy with concentrated-mass cantilevers , 2005 .

[4]  Pierre-Emmanuel Mazeran,et al.  Force modulation with a scanning force microscope: an analysis , 1997 .

[5]  A. Alippi,et al.  Effect of tip geometry on local indentation modulus measurement via atomic force acoustic microscopy technique , 2005 .

[6]  Ashok Kumar,et al.  Nano-indentation studies of hard coatings prepared by laser ablation , 1997 .

[7]  J. Narayan,et al.  Preparation and mechanical properties of composite diamond-like carbon thin films , 1999 .

[8]  S. Valeri,et al.  Pulsed laser ablation of glassy carbon targets for the coating of ion accelerator electrodes , 2001 .

[9]  Amelio,et al.  Quantitative determination of contact stiffness using atomic force acoustic microscopy , 2000, Ultrasonics.

[10]  D. Schneider,et al.  Non-destructive characterization and evaluation of thin films by laser-induced ultrasonic surface waves , 1996 .

[11]  Sergei V. Kalinin,et al.  Simultaneous elastic and electromechanical imaging by scanning probe microscopy: Theory and applications to ferroelectric and biological materials , 2005 .

[12]  Yu-Chong Tai,et al.  Integrated movable micromechanical structures for sensors and actuators , 1988 .

[13]  H. Pierson Handbook of carbon, graphite, diamond, and fullerenes , 1992 .

[14]  Kwang-Ryeol Lee,et al.  A method of determining the elastic properties of diamond-like carbon films , 1999 .

[15]  S. K. Biswas,et al.  Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy , 2000 .

[16]  Bharat Bhushan,et al.  Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy , 2001 .

[17]  Ute Rabe,et al.  Vibrations of free and surface‐coupled atomic force microscope cantilevers: Theory and experiment , 1996 .

[18]  J. Sader,et al.  Calibration of rectangular atomic force microscope cantilevers , 1999 .

[19]  Joseph A. Turner,et al.  Atomic force acoustic microscopy methods to determine thin-film elastic properties , 2003 .

[20]  M. Yanagisawa,et al.  Mechanical properties of diamondlike carbon films , 1989 .

[21]  Robert E. Geer,et al.  Nanomechanical defect imaging in premetal dielectrics for integrated circuits , 2004 .