Receding horizon tracking control of wheeled mobile robots

In this paper, a receding horizon (RH) controller is developed for tracking control of a nonholonomic mobile robot. The control stability is guaranteed by adding a terminal-state penalty to the cost function and constraining the terminal state to a terminal-state region. The stability analysis in the terminal-state region is investigated, and a virtual controller is found. The analysis results show that the RH tracking control has simultaneous tracking and regulation capability. Simulation results are provided to verify the proposed control strategy. It is shown that the control strategy is feasible.

[1]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot: backstepping kinematics into dynamics , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[2]  Warren E. Dixon,et al.  Global exponential tracking control of a mobile robot system via a PE condition , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[3]  F. Fontes Discontinuous feedbacks, discontinuous optimal controls, and continuous-time model predictive control , 2003 .

[4]  Richard M. Murray,et al.  Non-holonomic control systems: from steering to stabilization with sinusoids , 1995 .

[5]  F. Fontes A General Framework to Design Stabilizing Nonlinear Model Predictive Controllers , 2001 .

[6]  G. Nicolao,et al.  Stabilizing receding-horizon control of nonlinear time-varying systems , 1998, IEEE Trans. Autom. Control..

[7]  Georges Bastin,et al.  Control of Nonholonomic Wheeled Mobile Robots by State Feedback Linearization , 1995, Int. J. Robotics Res..

[8]  Jean-Baptiste Pomet Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift , 1992 .

[9]  Marilena Vendittelli,et al.  WMR control via dynamic feedback linearization: design, implementation, and experimental validation , 2002, IEEE Trans. Control. Syst. Technol..

[10]  M. B. Zarrop,et al.  Book Review: Adaptive Optimal Control: the thinking man's GPC , 1991 .

[11]  Claude Samson,et al.  Feedback control of a nonholonomic wheeled cart in Cartesian space , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[12]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[13]  John Doyle,et al.  A receding horizon generalization of pointwise min-norm controllers , 2000, IEEE Trans. Autom. Control..

[14]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[15]  Giovanni Indiveri Kinematic time-invariant control of a 2D nonholonomic vehicle , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[16]  Fumio Miyazaki,et al.  A stable tracking control method for an autonomous mobile robot , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[17]  Richard M. Murray,et al.  Nonholonomic control systems: from steering to stabilization with sinusoids , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[18]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[19]  Alessandro De Luca,et al.  Control of nonholonomic systems via dynamic compensation , 1993, Kybernetika.

[20]  Sergey V. Drakunov,et al.  Tracking in nonholonomic dynamic systems via sliding modes , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[21]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[22]  Ching-Hung Lee,et al.  Tracking control of unicycle-modeled mobile robots using a saturation feedback controller , 2001, IEEE Trans. Control. Syst. Technol..

[23]  Henk Nijmeijer,et al.  Tracking Control of Mobile Robots: A Case Study in Backstepping , 1997, Autom..

[24]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..

[25]  H. Nijmeijer,et al.  Non-linear model predictive control for constrained mobile robots , 2001, 2001 European Control Conference (ECC).

[26]  A. Jadbabaie,et al.  Stabilizing receding horizon control of nonlinear systems: a control Lyapunov function approach , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[27]  V. Wertz,et al.  Adaptive Optimal Control: The Thinking Man's G.P.C. , 1991 .

[28]  O. J. Sordalen,et al.  Exponential stabilization of mobile robots with nonholonomic constraints , 1992 .

[29]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[30]  H. ChenT,et al.  A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme with Guaranteed Stability * , 1998 .