Receding horizon tracking control of wheeled mobile robots
暂无分享,去创建一个
[1] Frank L. Lewis,et al. Control of a nonholonomic mobile robot: backstepping kinematics into dynamics , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[2] Warren E. Dixon,et al. Global exponential tracking control of a mobile robot system via a PE condition , 2000, IEEE Trans. Syst. Man Cybern. Part B.
[3] F. Fontes. Discontinuous feedbacks, discontinuous optimal controls, and continuous-time model predictive control , 2003 .
[4] Richard M. Murray,et al. Non-holonomic control systems: from steering to stabilization with sinusoids , 1995 .
[5] F. Fontes. A General Framework to Design Stabilizing Nonlinear Model Predictive Controllers , 2001 .
[6] G. Nicolao,et al. Stabilizing receding-horizon control of nonlinear time-varying systems , 1998, IEEE Trans. Autom. Control..
[7] Georges Bastin,et al. Control of Nonholonomic Wheeled Mobile Robots by State Feedback Linearization , 1995, Int. J. Robotics Res..
[8] Jean-Baptiste Pomet. Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift , 1992 .
[9] Marilena Vendittelli,et al. WMR control via dynamic feedback linearization: design, implementation, and experimental validation , 2002, IEEE Trans. Control. Syst. Technol..
[10] M. B. Zarrop,et al. Book Review: Adaptive Optimal Control: the thinking man's GPC , 1991 .
[11] Claude Samson,et al. Feedback control of a nonholonomic wheeled cart in Cartesian space , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.
[12] David Q. Mayne,et al. Constrained model predictive control: Stability and optimality , 2000, Autom..
[13] John Doyle,et al. A receding horizon generalization of pointwise min-norm controllers , 2000, IEEE Trans. Autom. Control..
[14] E. Gilbert,et al. Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .
[15] Giovanni Indiveri. Kinematic time-invariant control of a 2D nonholonomic vehicle , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[16] Fumio Miyazaki,et al. A stable tracking control method for an autonomous mobile robot , 1990, Proceedings., IEEE International Conference on Robotics and Automation.
[17] Richard M. Murray,et al. Nonholonomic control systems: from steering to stabilization with sinusoids , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.
[18] R. W. Brockett,et al. Asymptotic stability and feedback stabilization , 1982 .
[19] Alessandro De Luca,et al. Control of nonholonomic systems via dynamic compensation , 1993, Kybernetika.
[20] Sergey V. Drakunov,et al. Tracking in nonholonomic dynamic systems via sliding modes , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[21] D. Q. Mayne,et al. Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..
[22] Ching-Hung Lee,et al. Tracking control of unicycle-modeled mobile robots using a saturation feedback controller , 2001, IEEE Trans. Control. Syst. Technol..
[23] Henk Nijmeijer,et al. Tracking Control of Mobile Robots: A Case Study in Backstepping , 1997, Autom..
[24] J. Rawlings,et al. The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..
[25] H. Nijmeijer,et al. Non-linear model predictive control for constrained mobile robots , 2001, 2001 European Control Conference (ECC).
[26] A. Jadbabaie,et al. Stabilizing receding horizon control of nonlinear systems: a control Lyapunov function approach , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).
[27] V. Wertz,et al. Adaptive Optimal Control: The Thinking Man's G.P.C. , 1991 .
[28] O. J. Sordalen,et al. Exponential stabilization of mobile robots with nonholonomic constraints , 1992 .
[29] Weiping Li,et al. Applied Nonlinear Control , 1991 .
[30] H. ChenT,et al. A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme with Guaranteed Stability * , 1998 .