Geometric lower bounds for parametric matroid optimization

We relate the sequence of minimum bases of a matroid with linearly varying weights to three problems from combinatorial geometry: k -sets, lower envelopes of line segments, and convex polygons in line arrangements. Using these relations we show new lower bounds on the number of base changes in such sequences: Ω(nr 1/3 ) for a general n -element matroid with rank r , and Ω(mα(n)) for the special case of parametric graph minimum spanning trees. The only previous lower bound was Ω(n log r) for uniform matroids; upper bounds of O(mn 1/2 ) for arbitrary matroids and O(mn 1/2 / log * n) for uniform matroids were also known.

[1]  James G. Oxley,et al.  Matroid theory , 1992 .

[2]  David Fernández-Baca,et al.  Parametric Problems on Graphs of Bounded Tree-Width , 1992, J. Algorithms.

[3]  Refael Hassin,et al.  Maximizing Classes of Two-Parameter Objectives Over Matroids , 1989, Math. Oper. Res..

[4]  Micha Sharir,et al.  Planar realizations of nonlinear davenport-schinzel sequences by segments , 1988, Discret. Comput. Geom..

[5]  Micha Sharir,et al.  On Disjoint Concave Chains in Arrangements of (Pseudo) Lines , 1994, Inf. Process. Lett..

[6]  David Fernández-Baca,et al.  Parametric Problems on Graphs of Bounded Tree-Width , 1992, SWAT.

[7]  Leonidas J. Guibas,et al.  Points and triangles in the plane and halving planes in space , 1990, SCG '90.

[8]  John Hershberger,et al.  Convex Polygons Made from Few Lines and Convex Decompositions of Polyhedra , 1992, SWAT.

[9]  Francesco Maffioli,et al.  Multi-constrained matroidal knapsack problems , 1989, Math. Program..

[10]  David Eppstein,et al.  Using Sparsification for Parametric Minimum Spanning Tree Problems , 1996, Nord. J. Comput..

[11]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[12]  David Eppstein Improved Bounds for Intersecting Triangles and Halving Planes , 1993, J. Comb. Theory, Ser. A.

[13]  Richard M. Karp,et al.  Parametric shortest path algorithms with an application to cyclic staffing , 1981, Discret. Appl. Math..

[14]  Leonidas J. Guibas,et al.  Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..

[15]  Micha Sharir,et al.  Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.

[16]  Nimrod Megiddo,et al.  Linear Programming with Two Variables per Inequality in Poly-Log Time , 1990, SIAM J. Comput..

[17]  Herbert Edelsbrunner,et al.  Constructing Belts in Two-Dimensional Arrangements with Applications , 1986, SIAM J. Comput..

[18]  Ramaswamy Chandrasekaran,et al.  Minimal ratio spanning trees , 1977, Networks.

[19]  Richard Cole,et al.  On k-Hulls and Related Problems , 1987, SIAM J. Comput..

[20]  Hisao Tamaki,et al.  How to cut pseudo-parabolas into segments , 1995, SCG '95.

[21]  Robert E. Tarjan,et al.  Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.

[22]  Zoltán Füredi,et al.  On the number of halving planes , 1989, SCG '89.

[23]  David Eppstein,et al.  Choosing Subsets with Maximum Weighted Average , 1997, J. Algorithms.

[24]  R. Ravi,et al.  The Constrained Minimum Spanning Tree Problem (Extended Abstract) , 1996, SWAT.

[25]  Endre Szemerédi,et al.  An upper bound on the number of planarK-sets , 1992, Discret. Comput. Geom..

[26]  Leonidas J. Guibas,et al.  The complexity and construction of many faces in arrangements of lines and of segments , 1990, Discret. Comput. Geom..

[27]  Herbert Edelsbrunner,et al.  Counting triangle crossings and halving planes , 1993, SCG '93.

[28]  J. Pach,et al.  An upper bound on the number of planar k-sets , 1989, 30th Annual Symposium on Foundations of Computer Science.

[29]  V GoldbergAndrew,et al.  Finding minimum-cost circulations by canceling negative cycles , 1989 .

[30]  David Fernández-Baca,et al.  Linear-Time Algorithms for Parametric Minimum Spanning Tree Problems on Planar Graphs , 1995, Theor. Comput. Sci..

[31]  Takeshi Tokuyama,et al.  On minimum and maximum spanning trees of linearly moving points , 1995, Discret. Comput. Geom..

[32]  Sivan Toledo,et al.  Maximizing non-linear concave functions in fixed dimension , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[33]  Dan Gusfield,et al.  Parametric optimization of sequence alignment , 1992, SODA '92.

[34]  P. Erdös,et al.  Dissection Graphs of Planar Point Sets , 1973 .

[35]  B. M. Fulk MATH , 1992 .

[36]  Hiroaki Ishii,et al.  Stochastic spanning tree problem , 1981, Discret. Appl. Math..

[37]  Daniel Mier Gusfield Sensitivity analysis for combinatorial optimization , 1980 .