Multimedia classification and event detection using double fusion

[1]  Wei Liu,et al.  Double Fusion for Multimedia Event Detection , 2012, MMM.

[2]  Thomas Serre,et al.  HMDB: A large video database for human motion recognition , 2011, 2011 International Conference on Computer Vision.

[3]  Cordelia Schmid,et al.  Action recognition by dense trajectories , 2011, CVPR 2011.

[4]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[5]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[6]  Sebastian Nowozin,et al.  On feature combination for multiclass object classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[7]  M. Shah,et al.  Learning semantic visual vocabularies using diffusion distance , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Jiebo Luo,et al.  Recognizing realistic actions from videos “in the wild” , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Jiebo Luo,et al.  Recognizing realistic actions from videos , 2009, CVPR.

[10]  Mehryar Mohri,et al.  L2 Regularization for Learning Kernels , 2009, UAI.

[11]  Koen E. A. van de Sande,et al.  Evaluation of color descriptors for object and scene recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Yi Yang,et al.  Harmonizing Hierarchical Manifolds for Multimedia Document Semantics Understanding and Cross-Media Retrieval , 2008, IEEE Transactions on Multimedia.

[13]  Rong Yan,et al.  Can High-Level Concepts Fill the Semantic Gap in Video Retrieval? A Case Study With Broadcast News , 2007, IEEE Transactions on Multimedia.

[14]  Stéphane Ayache,et al.  Classifier Fusion for SVM-Based Multimedia Semantic Indexing , 2007, ECIR.

[15]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[16]  Thomas Gärtner,et al.  Efficient co-regularised least squares regression , 2006, ICML.

[17]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[18]  Cees G. M. Snoek,et al.  Early versus late fusion in semantic video analysis , 2005, MULTIMEDIA '05.

[19]  G. LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[20]  Harriet J. Nock,et al.  Discriminative model fusion for semantic concept detection and annotation in video , 2003, ACM Multimedia.

[21]  Ivan Laptev,et al.  On Space-Time Interest Points , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[22]  Louis Vuurpijl,et al.  An overview and comparison of voting methods for pattern recognition , 2002, Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition.

[23]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[24]  B. Schölkopf,et al.  Advances in kernel methods: support vector learning , 1999 .

[25]  Mubarak Shah,et al.  Columbia-UCF TRECVID2010 Multimedia Event Detection: Combining Multiple Modalities, Contextual Concepts, and Temporal Matching , 2010, TRECVID.

[26]  Alexander G. Hauptmann,et al.  MoSIFT : Recognizing Human Actions in Surveillance Videos CMU-CS-09-161 , 2009 .

[27]  Alexander G. Hauptmann,et al.  MoSIFT: Recognizing Human Actions in Surveillance Videos , 2009 .

[28]  Michael C. Nechyba,et al.  PittPatt Face Detection and Tracking for the CLEAR 2007 Evaluation , 2007, CLEAR.