A control chart based on a change-point model for monitoring linear profiles

A control chart based on the change-point model is proposed that is able to monitor linear profiles whose parameters are unknown but can be estimated from historical data. This chart can detect a shift in either the intercept, slope or standard deviation. Simulation results show that the proposed approach performs well across a range of possible shifts, and that it can be used during the start-up stages of a process. Simple diagnostic aids are also given to estimate the location of the change and to determine which of the parameters has changed.

[1]  Douglas M. Hawkins,et al.  A Change-Point Model for a Shift in Variance , 2005 .

[2]  T. Lai SEQUENTIAL ANALYSIS: SOME CLASSICAL PROBLEMS AND NEW CHALLENGES , 2001 .

[3]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[4]  Donald Holbert,et al.  A Bayesian analysis of a switching linear model , 1982 .

[5]  L. Allison Jones,et al.  The Statistical Design of EWMA Control Charts with Estimated Parameters , 2002 .

[6]  Jie Chen Testing for a change point in linear regression models , 1998 .

[7]  D. Siegmund,et al.  Using the Generalized Likelihood Ratio Statistic for Sequential Detection of a Change-Point , 1995 .

[8]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[9]  Minitab Statistical Methods for Quality Improvement , 2001 .

[10]  D. Siegmund,et al.  The likelihood ratio test for a change-point in simple linear regression , 1989 .

[11]  Lan Kang,et al.  On-Line Monitoring When the Process Yields a Linear Profile , 2000 .

[12]  Charles W. Champ,et al.  The Run Length Distribution of the CUSUM with Estimated Parameters , 2004 .

[13]  Joseph J. Pignatiello,et al.  A magnitude‐robust control chart for monitoring and estimating step changes for normal process means , 2002 .

[14]  C. Quesenberry On Properties of Q Charts for Variables , 1995 .

[15]  Joseph J. Pignatiello,et al.  On Estimating X̄ Control Chart Limits , 2001 .

[16]  William H. Woodall,et al.  Phase I Analysis of Linear Profiles With Calibration Applications , 2004, Technometrics.

[17]  Charles P. Quesenberry,et al.  DPV Q charts for start-up processes and short or long runs , 1991 .

[18]  D. Hawkins Self‐Starting Cusum Charts for Location and Scale , 1987 .

[19]  Giovanna Capizzi,et al.  An Adaptive Exponentially Weighted Moving Average Control Chart , 2003, Technometrics.

[20]  William H. Woodall,et al.  A Control Chart for Preliminary Analysis of Individual Observations , 1996 .

[21]  Fred Spiring,et al.  Introduction to Statistical Quality Control , 2007, Technometrics.

[22]  Joe H. Sullivan,et al.  A Self-Starting Control Chart for Multivariate Individual Observations , 2002, Technometrics.

[23]  Douglas M. Hawkins,et al.  The Changepoint Model for Statistical Process Control , 2003 .

[24]  Elisabeth J. Umble,et al.  Cumulative Sum Charts and Charting for Quality Improvement , 2001, Technometrics.

[25]  Douglas M. Hawkins,et al.  Variable selection in heteroscedastic discriminant analysis , 1986 .

[26]  Charles P. Quesenberry,et al.  The Effect of Sample Size on Estimated Limits for and X Control Charts , 1993 .

[27]  Charles W. Champ,et al.  The Performance of Exponentially Weighted Moving Average Charts With Estimated Parameters , 2001, Technometrics.

[28]  Joseph J. Pignatiello,et al.  Estimation of the Change Point of a Normal Process Mean in SPC Applications , 2001 .

[29]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[30]  Douglas M. Hawkins,et al.  Statistical Process Control for Shifts in Mean or Variance Using a Changepoint Formulation , 2005, Technometrics.

[31]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[32]  Frederick S. Hillier,et al.  Small Sample Probability Limits for the Range Chart , 1967 .

[33]  Hyune Ju Kim Likelihood Ratio and Cumulative Sum Tests for a Change-Point in Linear Regression , 1994 .

[34]  Edit Gombay,et al.  Sequential change-point detection with likelihood ratios , 2000 .

[35]  Mahmoud A. Mahmoud,et al.  On the Monitoring of Linear Profiles , 2003 .

[36]  Joseph J. Pignatiello,et al.  On Estimating X-bar Control Chart Limits , 2001 .

[37]  Douglas C. Montgomery,et al.  Using Control Charts to Monitor Process and Product Quality Profiles , 2004 .

[38]  D. Siegmund,et al.  Sequential Detection of a Change in a Normal Mean when the Initial Value is Unknown , 1991 .

[39]  Frederick S. Hillier,et al.  X-Bar- and R-Chart Control Limits Based on A Small Number of Subgroups , 1969 .

[40]  Hyune-Ju Kim,et al.  Tests for a change-point in linear regression , 1994 .

[41]  Harold Gulliksen,et al.  Regression tests for several samples , 1950, Psychometrika.

[42]  D. L. Hawkins A u-i approach to retrospective testing for shifting parameters in a linear model , 1989 .

[43]  Frederick S. Hillier,et al.  Mean and Variance Control Chart Limits Based on a Small Number of Subgroups , 1970 .

[44]  Mahmoud A. Mahmoud,et al.  A change point method for linear profile data , 2007, Qual. Reliab. Eng. Int..