A symmetry treatment of Danzerian rigidity for circle packing

A symmetry-extended mobility criterion that incorporates Danzer's concept of bar-and-joint assemblies is derived and applied to the spherical circle-packing problem. The known scalar counting rule for Danzerian freedoms is strengthened in an equation that predicts not only the number, but also the symmetries, of distortion modes that may be used to improve a packing. Relationships between alternative candidates for best packing are consequences of the co-kernel structure of the representation spanned by Danzerian mechanisms, and in several cases lead to new local optima.

[1]  P. Tammes On the origin of number and arrangement of the places of exit on the surface of pollen-grains , 1930 .

[2]  Tomaso Aste,et al.  The pursuit of perfect packing , 2000 .

[3]  Patrick W. Fowler,et al.  A symmetry extension of Maxwell's rule for rigidity of frames , 2000 .

[4]  Robert Connelly Rigidity of packings , 2008, Eur. J. Comb..

[5]  P. Fowler,et al.  Extension of Euler's theorem to symmetry properties of polyhedra , 1991, Nature.

[6]  J. Landes Application of a J-Q Model for Fracture in the Ductile-Brittle Transition , 1997 .

[7]  John Leech,et al.  Equilibrium of Sets of Particles on a Sphere , 1957, The Mathematical Gazette.

[8]  R. Robinson Arrangement of 24 points on a sphere , 1961 .

[9]  Patrick W. Fowler,et al.  Symmetry conditions and finite mechanisms , 2007 .

[10]  T. Tarnai,et al.  Improved packing of equal circles on a sphere and rigidity of its graph , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  C. Calladine Buckminster Fuller's “Tensegrity” structures and Clerk Maxwell's rules for the construction of stiff frames , 1978 .

[12]  M. Child,et al.  Tables for group theory , 1970 .

[13]  Robert Connelly,et al.  Rigid Circle and Sphere Packings. Part I: Finite Packings , 1988 .

[14]  Simon D. Guest,et al.  The stiffness of prestressed frameworks: A unifying approach , 2006 .

[15]  S. Pellegrino,et al.  Matrix analysis of statically and kinematically indeterminate frameworks , 1986 .

[16]  Z. Gáspár,et al.  Arrangement of 23 points on a sphere (on a conjecture of R. M. Robinson) , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[17]  D. Kottwitz The densest packing of equal circles on a sphere , 1991 .

[18]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[19]  Alan L. Mackay,et al.  New Geometries for New Materials , 2006 .

[20]  Douglas J. Klein,et al.  Group Theory and Chemistry , 1973 .

[21]  B. L. Waerden,et al.  Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz? , 1951 .

[22]  T. Tarnai,et al.  Rigidity and Stability of Prestressed Infinitesimal Mechanisms , 2002 .

[23]  T. Tarnai,et al.  Packing of regular tetrahedral quartets of circles on a sphere , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  Peter Herzig,et al.  Point-Group Theory Tables , 1994 .

[25]  Patrick W. Fowler,et al.  A symmetry-extended mobility rule , 2005 .

[26]  Ludwig Danzer,et al.  Finite point-sets on S2 with minimum distance as large as possible , 1986, Discret. Math..

[27]  Heinz Rutishauser Über punktverteilungen auf der kugelfläche , 1944 .

[28]  Pw Fowler,et al.  σ, π and δ representations of the molecular point groups , 1986 .

[29]  Tibor Tarnai Packing of Equal Circles in a Circle , 1998 .