A symmetry treatment of Danzerian rigidity for circle packing
暂无分享,去创建一个
S. Guest | T. Tarnai | P. W. Fowler | P.W Fowler | S.D Guest | T Tarnai
[1] P. Tammes. On the origin of number and arrangement of the places of exit on the surface of pollen-grains , 1930 .
[2] Tomaso Aste,et al. The pursuit of perfect packing , 2000 .
[3] Patrick W. Fowler,et al. A symmetry extension of Maxwell's rule for rigidity of frames , 2000 .
[4] Robert Connelly. Rigidity of packings , 2008, Eur. J. Comb..
[5] P. Fowler,et al. Extension of Euler's theorem to symmetry properties of polyhedra , 1991, Nature.
[6] J. Landes. Application of a J-Q Model for Fracture in the Ductile-Brittle Transition , 1997 .
[7] John Leech,et al. Equilibrium of Sets of Particles on a Sphere , 1957, The Mathematical Gazette.
[8] R. Robinson. Arrangement of 24 points on a sphere , 1961 .
[9] Patrick W. Fowler,et al. Symmetry conditions and finite mechanisms , 2007 .
[10] T. Tarnai,et al. Improved packing of equal circles on a sphere and rigidity of its graph , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] C. Calladine. Buckminster Fuller's “Tensegrity” structures and Clerk Maxwell's rules for the construction of stiff frames , 1978 .
[12] M. Child,et al. Tables for group theory , 1970 .
[13] Robert Connelly,et al. Rigid Circle and Sphere Packings. Part I: Finite Packings , 1988 .
[14] Simon D. Guest,et al. The stiffness of prestressed frameworks: A unifying approach , 2006 .
[15] S. Pellegrino,et al. Matrix analysis of statically and kinematically indeterminate frameworks , 1986 .
[16] Z. Gáspár,et al. Arrangement of 23 points on a sphere (on a conjecture of R. M. Robinson) , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[17] D. Kottwitz. The densest packing of equal circles on a sphere , 1991 .
[18] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[19] Alan L. Mackay,et al. New Geometries for New Materials , 2006 .
[20] Douglas J. Klein,et al. Group Theory and Chemistry , 1973 .
[21] B. L. Waerden,et al. Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz? , 1951 .
[22] T. Tarnai,et al. Rigidity and Stability of Prestressed Infinitesimal Mechanisms , 2002 .
[23] T. Tarnai,et al. Packing of regular tetrahedral quartets of circles on a sphere , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[24] Peter Herzig,et al. Point-Group Theory Tables , 1994 .
[25] Patrick W. Fowler,et al. A symmetry-extended mobility rule , 2005 .
[26] Ludwig Danzer,et al. Finite point-sets on S2 with minimum distance as large as possible , 1986, Discret. Math..
[27] Heinz Rutishauser. Über punktverteilungen auf der kugelfläche , 1944 .
[28] Pw Fowler,et al. σ, π and δ representations of the molecular point groups , 1986 .
[29] Tibor Tarnai. Packing of Equal Circles in a Circle , 1998 .