Excitation Wavelength Dependence of Photocatalyzed Oxidation of Methanol on TiO2(110)

Post-irradiation temperature-programmed desorption (TPD) has been used to study the photo catalyzed oxidation of methanol on TiO2(110) surface under the irradiation of 360, 380 and 400 nm light. The photocatalytic process initiated by ultraviolet light of different wavelength are similar. Methanol has been photocatalytically converted into formaldehyde, and the released hydrogen atoms transfer to the neighboring twofold coordinated oxygen to form bridging hydroxyls. The reaction rate, however, is strongly wavelength dependent. The reaction rate under 360 nm light irradiation is 4.8 times of that in the case of 400 nm exposure, consistent with a previous femtosecond time-resolved absorption measurement on TiO2 which shows the faster charge carrier recombination in the near-band-gap than the over-band-gap excitation. So far, the underlying factors which govern the excitation wavelength dependence of photocatalytic activity of TiO2 and other photocatalysts remain unclear, and future studies are needed to address this important issue.

[1]  Zhibo Ma,et al.  Characterization of the Excited State on Methanol/TiO2(110) Interface , 2015 .

[2]  Li‐Min Liu,et al.  Effect of Surface Structure on the Photoreactivity of TiO2 , 2015 .

[3]  J. Friend,et al.  UV/ozone-assisted low temperature preparation of mesoporous TiO2 with tunable phase composition and enhanced solar light photocatalytic activity , 2014 .

[4]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[5]  Jian Pan,et al.  Titanium dioxide crystals with tailored facets. , 2014, Chemical reviews.

[6]  K. Domen,et al.  Trapped state sensitive kinetics in LaTiO2N solid photocatalyst with and without cocatalyst loading. , 2014, Journal of the American Chemical Society.

[7]  Wenshao Yang,et al.  Molecular hydrogen formation from photocatalysis of methanol on anatase-TiO₂(101). , 2014, Journal of the American Chemical Society.

[8]  Wenshao Yang,et al.  Strong photon energy dependence of the photocatalytic dissociation rate of methanol on TiO2(110). , 2013, Journal of the American Chemical Society.

[9]  Wenshao Yang,et al.  Suppression of Photoinduced BBO Defects Generation on TiO2(110) by Water , 2013 .

[10]  Wenshao Yang,et al.  Photoinduced Decomposition of Formaldehyde on a TiO2(110) Surface, Assisted by Bridge-Bonded Oxygen Atoms , 2013 .

[11]  Wenshao Yang,et al.  Molecular hydrogen formation from photocatalysis of methanol on TiO2(110). , 2013, Journal of the American Chemical Society.

[12]  Yunsheng Ma,et al.  Photocatalytic cross-coupling of methanol and formaldehyde on a rutile TiO2(110) surface. , 2013, Journal of the American Chemical Society.

[13]  I. Lyubinetsky,et al.  Molecular-level insights into photocatalysis from scanning probe microscopy studies on TiO2(110). , 2013, Chemical reviews.

[14]  Zhibo Ma,et al.  Methyl Formate Production on TiO2(110), Initiated by Methanol Photocatalysis at 400 nm , 2013 .

[15]  Zhibo Ma,et al.  Kinetics and Dynamics of Photocatalyzed Dissociation of Ethanol on TiO2(110) , 2013 .

[16]  Stephen C. Jensen,et al.  Sequential photo-oxidation of methanol to methyl formate on TiO2(110). , 2013, Journal of the American Chemical Society.

[17]  Zhibo Ma,et al.  Surface photochemistry probed by two-photon photoemission spectroscopy , 2012 .

[18]  N. A. Deskins,et al.  Hydrogen reactivity on highly-hydroxylated TiO2(110) surfaces prepared via carboxylic acid adsorption and photolysis. , 2012, Physical chemistry chemical physics : PCCP.

[19]  M. A. Henderson A surface science perspective on TiO2 photocatalysis , 2011 .

[20]  Jinlong Yang,et al.  Site-specific photocatalytic splitting of methanol on TiO2(110) , 2010 .

[21]  Zhibo Ma,et al.  A Surface Femtosecond Two-Photon Photoemission Spectrometer for Excited Electron Dynamics and Time-Dependent Photochemical Kinetics , 2010 .

[22]  Daniel P. Wilson,et al.  Final State Distributions of O 2 Photodesorbed from TiO 2 (110) , 2009 .

[23]  B. Hammer,et al.  Imaging of the hydrogen subsurface site in rutile TiO2. , 2009, Physical review letters.

[24]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[25]  C. Minot,et al.  Diffusion versus desorption: complex behavior of H atoms on an oxide surface. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  A. Chibisov,et al.  J-aggregation of anionic ethyl meso-thiacarbocyanine dyes induced by binding to proteins. , 2007, The journal of physical chemistry. B.

[27]  John T Yates,et al.  Surface science studies of the photoactivation of TiO2--new photochemical processes. , 2006, Chemical reviews.

[28]  B. D. Kay,et al.  Imaging adsorbate O-H bond cleavage: methanol on TiO2(110). , 2006, Journal of the American Chemical Society.

[29]  J. Yates,et al.  Control of a surface photochemical process by fractal electron transport across the surface: O(2) photodesorption from TiO(2)(110). , 2006, The journal of physical chemistry. B.

[30]  J. Yates,et al.  TiO2-based Photocatalysis: Surface Defects, Oxygen and Charge Transfer , 2005 .

[31]  B. Ohtani,et al.  Effect of Excitation Wavelength on Ultrafast Electron–Hole Recombination in Titanium(IV) Oxide Powders Irradiated by Femtosecond Laser Pulses , 2005 .

[32]  M. A. Grela,et al.  Photon flux and wavelength effects on the selectivity and product yields of the photocatalytic air oxidation of neat cyclohexane on TiO(2) particles. , 2005, The journal of physical chemistry. B.

[33]  W. Ranke,et al.  Heteroepitaxial Growth and Nucleation of Iron Oxide Films on Ru(0001) , 2003 .

[34]  Michael A. Henderson,et al.  The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited , 2002 .

[35]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[36]  A. Colussi,et al.  Efficiency of Hot Carrier Trapping by Outer-Sphere Redox Probes at Quantum Dot Interfaces , 1999 .

[37]  A. Colussi,et al.  Photon Energy and Photon Intermittence Effects on the Quantum Efficiency of Photoinduced Oxidations in Crystalline and Metastable TiO2 Colloidal Nanoparticles , 1999 .

[38]  S. H. Kim,et al.  UV-induced desorption of CH3X (X=I and Br)/TiO2(110) , 1998 .

[39]  A. Colussi,et al.  Harnessing Excess Photon Energy in Photoinduced Surface Electron Transfer between Salicylate and Illuminated Titanium Dioxide Nanoparticles , 1997 .

[40]  P. Kamat,et al.  Photocatalytic Degradation of 4-Chlorophenol: The Effects of Varying TiO2Concentration and Light Wavelength☆ , 1997 .

[41]  Michael A. Henderson,et al.  Structural Sensitivity in the Dissociation of Water on TiO2 Single-Crystal Surfaces , 1996 .

[42]  Michael A. Henderson,et al.  An HREELS and TPD study of water on TiO2(110): the extent of molecular versus dissociative adsorption , 1996 .

[43]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[44]  J. Yates,et al.  THE ADSORPTION AND PHOTODESORPTION OF OXYGEN ON THE TIO2(110) SURFACE , 1995 .

[45]  Richard L. Kurtz,et al.  UPS synchrotron radiation studies of NH3 adsorption on TiO2(110) , 1992 .

[46]  Raoul Kopelman,et al.  Fractal Reaction Kinetics , 1988, Science.

[47]  Raoul Kopelman,et al.  Fractal reaction kinetics: exciton fusion on clusters , 1983 .

[48]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[49]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[50]  M. A. Henderson,et al.  The chemistry of methanol on the TiO2(110) surface: the influence of vacancies and coadsorbed species , 1999 .

[51]  Faraday Discuss , 1985 .