Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna

A scheme for the direct conversion of millimeter and THz waves to optical signals is introduced. The compact device consists of a plasmonic phase modulator that is seamlessly cointegrated with an antenna. Neither high-speed electronics nor electronic amplification is required to drive the modulator. A built-in enhancement of the electric field by a factor of 35 000 enables the direct conversion of millimeter-wave signals to the optical domain. This high enhancement is obtained via a resonant antenna that is directly coupled to an optical field by means of a plasmonic modulator. The suggested concept provides a simple and cost-efficient alternative solution to conventional schemes where millimeter-wave signals are first converted to the electrical domain before being up-converted to the optical domain.

[1]  M. Weiss,et al.  60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s , 2008, Journal of Lightwave Technology.

[2]  Yasuyuki Okamura,et al.  Electrooptic Millimeter-Wave–Lightwave Signal Converters Suspended to Gap-Embedded Patch Antennas on Low-$k$ Dielectric Materials , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[4]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[5]  Cyril C. Renaud,et al.  TeraHertz Photonics for Wireless Communications , 2015, Journal of Lightwave Technology.

[6]  O. Ambacher,et al.  Wireless sub-THz communication system with high data rate , 2013, Nature Photonics.

[7]  Bruce H. Robinson,et al.  Matrix-Assisted Poling of Monolithic Bridge-Disubstituted Organic NLO Chromophores , 2014 .

[8]  Vladimir M Shalaev,et al.  The Case for Plasmonics , 2010, Science.

[9]  J. Wells,et al.  Faster than fiber: The future of multi-G/s wireless , 2009, IEEE Microwave Magazine.

[10]  J.H. Schaffner,et al.  Wave-coupled LiNbO/sub 3/ electrooptic modulator for microwave and millimeter-wave modulation , 1991, IEEE Photonics Technology Letters.

[11]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[12]  Ray T. Chen,et al.  Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna Coupled Silicon Organic Hybrid Modulator , 2014, Journal of Lightwave Technology.

[13]  Min Qiu,et al.  Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface , 2009 .

[14]  Li Li,et al.  Silica/Electro-Optic Polymer Optical Modulator With Integrated Antenna for Microwave Receiving , 2014, Journal of Lightwave Technology.

[15]  Juerg Leuthold,et al.  Antenna Coupled Plasmonic Modulator , 2015 .

[16]  Ray T. Chen,et al.  Antenna-coupled silicon-organic hybrid integrated photonic crystal modulator for broadband electromagnetic wave detection , 2015, Photonics West - Optoelectronic Materials and Devices.

[17]  D. S. Bradshaw,et al.  Photonics , 2023, 2023 International Conference on Electrical Engineering and Photonics (EExPolytech).

[18]  D. Hillerkuss,et al.  108 Gbit/s Plasmonic Mach–Zehnder Modulator with > 70-GHz Electrical Bandwidth , 2016, Journal of Lightwave Technology.

[19]  X. Zhang,et al.  Ultrafast electro-optic field sensors , 1996 .

[20]  W. Cai,et al.  Compact, high-speed and power-efficient electrooptic plasmonic modulators. , 2009, Nano letters.

[21]  N. Kukutsu,et al.  Transmission Characteristics of 120-GHz-Band Wireless Link Using Radio-on-Fiber Technologies , 2008, Journal of Lightwave Technology.

[22]  Ulf Peschel,et al.  Nanoscale conducting oxide PlasMOStor. , 2014, Nano letters.

[23]  T Berceli,et al.  Microwave Photonics—A Historical Perspective , 2010, IEEE Transactions on Microwave Theory and Techniques.

[24]  J.H. Schaffner,et al.  60 GHz and 94 GHz antenna-coupled LiNbO/sub 3/ electrooptic modulators , 1993, IEEE Photonics Technology Letters.