Plasmonic Surface Lattice Resonances: A Review of Properties and Applications

When metal nanoparticles are arranged in an ordered array, they may scatter light to produce diffracted waves. If one of the diffracted waves then propagates in the plane of the array, it may couple the localized plasmon resonances associated with individual nanoparticles together, leading to an exciting phenomenon, the drastic narrowing of plasmon resonances, down to 1–2 nm in spectral width. This presents a dramatic improvement compared to a typical single particle resonance line width of >80 nm. The very high quality factors of these diffractively coupled plasmon resonances, often referred to as plasmonic surface lattice resonances, and related effects have made this topic a very active and exciting field for fundamental research, and increasingly, these resonances have been investigated for their potential in the development of practical devices for communications, optoelectronics, photovoltaics, data storage, biosensing, and other applications. In the present review article, we describe the basic physical principles and properties of plasmonic surface lattice resonances: the width and quality of the resonances, singularities of the light phase, electric field enhancement, etc. We pay special attention to the conditions of their excitation in different experimental architectures by considering the following: in-plane and out-of-plane polarizations of the incident light, symmetric and asymmetric optical (refractive index) environments, the presence of substrate conductivity, and the presence of an active or magnetic medium. Finally, we review recent progress in applications of plasmonic surface lattice resonances in various fields.

[1]  Ranjan Singh,et al.  Lattice-induced transparency in planar metamaterials , 2016, 1605.03277.

[2]  D. R. Tilley,et al.  Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces , 1983 .

[3]  Yun Lai,et al.  Dirac spectra and edge states in honeycomb plasmonic lattices. , 2008, Physical review letters.

[4]  Y. Kivshar,et al.  Polarization-independent Fano resonances in arrays of core-shell nanoparticles , 2012 .

[5]  A. Koenderink,et al.  Spin-Dependent Emission from Arrays of Planar Chiral Nanoantennas Due to Lattice and Localized Plasmon Resonances. , 2016, ACS nano.

[6]  Teri W. Odom,et al.  Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. , 2017, Nature nanotechnology.

[7]  Hui Cao,et al.  Coherent perfect absorbers: Time-reversed lasers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[8]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[9]  G. Shvets,et al.  Suppression of long-range collective effects in meta-surfaces formed by plasmonic antenna pairs. , 2011, Optics express.

[10]  C. Haynes,et al.  Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles , 2000 .

[11]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[12]  Hervé Dallaporta,et al.  Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects. , 2012, Optics express.

[13]  H. Dallaporta,et al.  Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies , 2013 .

[14]  Pierre-Michel Adam,et al.  Reversible strong coupling in silver nanoparticle arrays using photochromic molecules. , 2013, Nano letters.

[15]  C. Fotakis,et al.  3D plasmonic crystal metamaterials for ultra-sensitive biosensing , 2016, Scientific Reports.

[16]  Doyle,et al.  Optical properties of a suspension of metal spheres. , 1989, Physical review. B, Condensed matter.

[17]  Jianfang Wang,et al.  Dislocated Double-Layered Metal Gratings: Refractive Index Sensors with High Figure of Merit , 2015, Plasmonics.

[18]  Wei Zhou,et al.  Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. , 2011, Nature nanotechnology.

[19]  J. Rivas,et al.  Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. , 2010, Physical review letters.

[20]  George C. Schatz,et al.  Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths , 2006 .

[21]  D. Thourhout,et al.  Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light , 2012, 1305.3135.

[22]  L. Silberstein,et al.  L. Molecular refractivity and atomic interaction. II , 1917 .

[23]  V. Kravets,et al.  Solid‐State Electrolyte‐Gated Graphene in Optical Modulators , 2017, Advanced materials.

[24]  Robert P. H. Chang,et al.  Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays , 2014 .

[25]  M. Dressel,et al.  Physical interpretation of Mueller matrix spectra: a versatile method applied to gold gratings. , 2017, Optics express.

[26]  N I Zheludev,et al.  Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. , 2006, Physical review letters.

[27]  V. Kravets,et al.  Nanomechanical electro-optical modulator based on atomic heterostructures , 2016, Nature Communications.

[28]  Guozhen Li,et al.  Double-layered metal grating for high-performance refractive index sensing. , 2015, Optics express.

[29]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[30]  Hannes Jónsson,et al.  Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. , 2012, Physical chemistry chemical physics : PCCP.

[31]  V. Kravets,et al.  Sensitivity of collective plasmon modes of gold nanoresonators to local environment. , 2010, Optics letters.

[32]  Robert W Boyd,et al.  Ultra-strong polarization dependence of surface lattice resonances with out-of-plane plasmon oscillations. , 2016, Optics express.

[33]  H. Misawa,et al.  Near-Infrared Plasmon-Assisted Water Oxidation. , 2012, The journal of physical chemistry letters.

[34]  Rebecca L Rich,et al.  Survey of the 2009 commercial optical biosensor literature , 2011, Journal of molecular recognition : JMR.

[35]  E. Kretschmann,et al.  Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light , 1968 .

[36]  I. Kolmychek,et al.  Magnetization-induced effects in second harmonic generation under the lattice plasmon resonance excitation. , 2016, Optics letters.

[37]  Roberto Paiella,et al.  Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays. , 2012, Optics letters.

[38]  G. Lozano,et al.  Control of the external photoluminescent quantum yield of emitters coupled to nanoantenna phased arrays , 2015 .

[39]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[40]  J. Mugnier,et al.  Strong coupling between surface plasmons and excitons in an organic semiconductor. , 2004, Physical review letters.

[41]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[42]  M. Kuittinen,et al.  Multiple surface lattice resonances in second-harmonic generation from metasurfaces , 2015, 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS).

[43]  W. Barnes Particle plasmons: Why shape matters , 2016, 1609.04184.

[44]  Cheng-Wei Qiu,et al.  Color generation via subwavelength plasmonic nanostructures. , 2015, Nanoscale.

[45]  Bumsu Lee,et al.  Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice. , 2015, Nano letters.

[46]  E. Namdas,et al.  How to recognize lasing , 2009 .

[47]  M. Scully,et al.  Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point. , 2011, Optics express.

[48]  R. Caputo,et al.  In Depth Investigation of Lattice Plasmon Modes in Substrate-Supported Gratings of Metal Monomers and Dimers , 2017 .

[49]  H. Ho,et al.  Diffraction resonance with strong optical-field enhancement from gain-assisted hybrid plasmonic structure , 2012 .

[50]  B. Liedberg,et al.  Surface plasmon resonance for gas detection and biosensing , 1983 .

[51]  U. Hohenester,et al.  The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing , 2010 .

[52]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[53]  Eric Plum,et al.  Giant nonlinear optical activity in a plasmonic metamaterial , 2012, Nature Communications.

[54]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[55]  Experimental demonstration of the optical lattice resonance in arrays of Si nanoresonators , 2016 .

[56]  I. Simonsen,et al.  Critical dimension metrology of a plasmonic photonic crystal based on Mueller matrix ellipsometry and the reduced Rayleigh equation. , 2017, Optics letters.

[57]  Petr I. Nikitin,et al.  Surface plasmon resonance interferometer for bio- and chemical-sensors , 1998 .

[58]  M. Wegener,et al.  Past Achievements and Future Challenges in 3D Photonic Metamaterials , 2011, 1109.0084.

[59]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[60]  S. M. Sadeghi,et al.  Turning on plasmonic lattice modes in metallic nanoantenna arrays via silicon thin films. , 2016, Optics letters.

[61]  S. Maier,et al.  Lattice resonances in antenna arrays for liquid sensing in the terahertz regime. , 2011, Optics express.

[62]  Deepak Uttamchandani,et al.  Optical chemical sensing employing surface plasmon resonance , 1988 .

[63]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[64]  J. Rivas,et al.  Surface lattice resonances strongly coupled to Rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition. , 2013, Optics express.

[65]  J. Hafner,et al.  Plasmon resonances of a gold nanostar. , 2007, Nano letters.

[66]  Paul F. Liao,et al.  Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit , 1985 .

[67]  P. Prasad,et al.  Self-noise-filtering phase-sensitive surface plasmon resonance biosensing. , 2010, Optics express.

[68]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[69]  V. Kravets,et al.  Plasmonic resonances in optomagnetic metamaterials based on double dot arrays. , 2010, Optics express.

[70]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[71]  M. Dressel,et al.  Large-Area Two-Dimensional Plasmonic Meta-Glasses and Meta-Crystals: a Comparative Study , 2016, Plasmonics.

[72]  Teri W. Odom,et al.  Programmable and reversible plasmon mode engineering , 2016, Proceedings of the National Academy of Sciences.

[73]  V. Kravets,et al.  Surface Hydrogenation and Optics of a Graphene Sheet Transferred onto a Plasmonic Nanoarray , 2012 .

[74]  W. Barnes,et al.  Plasmonic surface lattice resonances on arrays of different lattice symmetry , 2014 .

[75]  R. Schasfoort,et al.  Handbook of surface plasmon resonance , 2008 .

[76]  G. Duscher,et al.  Ferroplasmons: intense localized surface plasmons in metal-ferromagnetic nanoparticles. , 2014, ACS nano.

[77]  Constantin R. Simovski,et al.  Topological Darkness in Self‐Assembled Plasmonic Metamaterials , 2014, Advanced materials.

[78]  T. Ebbesen,et al.  Reversible switching of ultrastrong light-molecule coupling. , 2011 .

[79]  Lukas Novotny,et al.  Optical Antennas , 2009 .

[80]  Rithvik R. Gutha,et al.  Ultrahigh refractive index sensitivity and tunable polarization switching via infrared plasmonic lattice modes , 2017 .

[81]  Baptiste Auguié,et al.  From Individual to Collective Chirality in Metal Nanoparticles* , 2011, Colloidal Synthesis of Plasmonic Nanometals.

[82]  G. Schatz,et al.  Aluminum and Indium Plasmonic Nanoantennas in the Ultraviolet , 2014 .

[83]  Mark D. Losego,et al.  Surface plasmon resonance in conducting metal oxides , 2006 .

[84]  Jean-Luc Pelouard,et al.  Optical extinction in a single layer of nanorods. , 2012, Physical review letters.

[85]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[86]  Petr I. Nikitin,et al.  Phase jumps and interferometric surface plasmon resonance imaging , 1999 .

[87]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[88]  J. Sipe,et al.  Surface-lattice resonances in two-dimensional arrays of spheres: Multipolar interactions and a mode analysis , 2017, 1703.01276.

[89]  Jeremy J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[90]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[91]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[92]  S. van Dijken,et al.  Hybrid plasmonic lattices with tunable magneto-optical activity. , 2016, Optics express.

[93]  Manuela Herman,et al.  Surface Plasmon Nanophotonics , 2016 .

[94]  Thomas Søndergaard,et al.  Optical transmission through two-dimensional arrays of β -Sn nanoparticles , 2011 .

[95]  Michele Dipalo,et al.  Out-of-Plane Plasmonic Antennas for Raman Analysis in Living Cells. , 2015, Small.

[96]  Matteo Galli,et al.  Silver high-aspect-ratio micro- and nanoimprinting for optical applications , 2009 .

[97]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[98]  William L. Barnes,et al.  Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays , 2005 .

[99]  M. Gather,et al.  Advances in small lasers , 2014, Nature Photonics.

[100]  W. Barnes,et al.  Diffractive coupling in gold nanoparticle arrays and the effect of disorder. , 2009, Optics letters.

[101]  A. Hoekstra,et al.  The discrete dipole approximation: an overview and recent developments , 2007, 0704.0038.

[102]  Rithvik R. Gutha,et al.  Biological sensing using hybridization phase of plasmonic resonances with photonic lattice modes in arrays of gold nanoantennas , 2017, Nanotechnology.

[103]  J. McGilp,et al.  General approach to the analysis of plasmonic structures using spectroscopic ellipsometry , 2013 .

[104]  A. E. Cetin,et al.  Seeing protein monolayers with naked eye through plasmonic Fano resonances , 2011, Proceedings of the National Academy of Sciences.

[105]  L. Liz‐Marzán,et al.  High-yield synthesis and optical response of gold nanostars , 2008, Nanotechnology.

[106]  Harald Giessen,et al.  Three‐Dimensional Bichiral Plasmonic Crystals Fabricated by Direct Laser Writing and Electroless Silver Plating , 2011, Advanced materials.

[107]  Boris N. Chichkov,et al.  Laser fabrication of large-scale nanoparticle arrays for sensing applications. , 2011, ACS nano.

[108]  George C Schatz,et al.  Lasing action in strongly coupled plasmonic nanocavity arrays. , 2013, Nature nanotechnology.

[109]  A. Roberts,et al.  Collective excitation of plasmonic hot-spots for enhanced hot charge carrier transfer in metal/semiconductor contacts. , 2015, Nanoscale.

[110]  E. M. Hicks,et al.  Nanoparticle Spectroscopy: Plasmon Coupling in Finite-Sized Two-Dimensional Arrays of Cylindrical Silver Nanoparticles , 2008 .

[111]  C. Mirkin,et al.  Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures , 2016 .

[112]  D. Ansell,et al.  Graphene-protected copper and silver plasmonics , 2014, Scientific Reports.

[113]  Filippo Capolino,et al.  Theory and Phenomena of Metamaterials , 2009 .

[114]  G. Lozano,et al.  Modified emission of extended light emitting layers by selective coupling to collective lattice resonances , 2016 .

[115]  Peter Nordlander,et al.  Aluminum for plasmonics. , 2014, ACS nano.

[116]  Z. Cao,et al.  Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials , 2011 .

[117]  S. Linden,et al.  Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. , 2001, Physical review letters.

[118]  R. V. Van Duyne,et al.  Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography. , 2005, Nano letters.

[119]  S. van Dijken,et al.  Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays , 2015, Nature Communications.

[120]  Antti-Pekka Eskelinen,et al.  Plasmonic surface lattice resonances at the strong coupling regime. , 2014, Nano letters.

[121]  Boris N. Chichkov,et al.  Laser-ablative engineering of phase singularities in plasmonic metamaterial arrays for biosensing applications , 2014 .

[122]  Rebecca L Rich,et al.  Survey of the year 2003 commercial optical biosensor literature , 2005, Journal of molecular recognition : JMR.

[123]  J. Homola Surface plasmon resonance based sensors , 2006 .

[124]  Zhe Liu,et al.  Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials , 2016 .

[125]  Jean-Luc Pelouard,et al.  λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. , 2011, Nano letters.

[126]  Teri W. Odom,et al.  Hybridization of Localized and Guided Modes in 2D Metal− Insulator−Metal Nanocavity Arrays , 2013 .

[127]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[128]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[129]  C. P. Burrows,et al.  Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays. , 2010, Optics express.

[130]  George C. Schatz,et al.  Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles , 2008 .

[131]  Javier Martí,et al.  Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses , 2011 .

[132]  Martin Dressel,et al.  Electrodynamics of solids , 2002 .

[133]  Ben M. Maoz,et al.  Chiroptical effects in planar achiral plasmonic oriented nanohole arrays. , 2012, Nano letters.

[134]  Teri W Odom,et al.  Multiscale patterning of plasmonic metamaterials. , 2007, Nature nanotechnology.

[135]  Thomas C. Hales,et al.  The Jordan Curve Theorem, Formally and Informally , 2007, Am. Math. Mon..

[136]  Mengjing Hou,et al.  Universal Near-Field Interference Patterns of Fano Resonances in Two-Dimensional Plasmonic Crystals , 2016, Plasmonics.

[137]  W. A. Murray,et al.  Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. , 2004, Physical review letters.

[138]  Viktoriia E. Babicheva,et al.  Enhanced Electron Photoemission by Collective Lattice Resonances in Plasmonic Nanoparticle-Array Photodetectors and Solar Cells , 2013, Plasmonics.

[139]  T Turbadar,et al.  Complete Absorption of Light by Thin Metal Films , 1959 .

[140]  Harald Giessen,et al.  Cavity-enhanced localized plasmon resonance sensing , 2010 .

[141]  Christoph Langhammer,et al.  Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms. , 2011, ACS nano.

[142]  A. Degiron,et al.  Superradiant optical emitters coupled to an array of nanosize metallic antennas. , 2012, Physical review letters.

[143]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[144]  Harald Giessen,et al.  From near-field to far-field coupling in the third dimension: retarded interaction of particle plasmons. , 2011, Nano letters.

[145]  Hongwei Liao,et al.  Biomedical applications of plasmon resonant metal nanoparticles. , 2006, Nanomedicine.

[146]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[147]  H. Xin,et al.  Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. , 2012, Nature materials.

[148]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[149]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[150]  Petr I. Nikitin,et al.  Interferometer based on a surface-plasmon resonance for sensor applications , 1997 .

[151]  Peter Nordlander,et al.  Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. , 2009, ACS nano.

[152]  Jietao Liu,et al.  Double Plasmon-Induced Transparency in Hybrid Waveguide-Plasmon System and Its Application for Localized Plasmon Resonance Sensing with High Figure of Merit , 2013, Plasmonics.

[153]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[154]  Artem Danilov,et al.  Phase-sensitive plasmonics biosensors: from bulk to nanoscale architechtures and novel functionalities , 2016, SPIE LASE.

[155]  Gennady Shvets,et al.  Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays. , 2010, Optics express.

[156]  V. Pruneri,et al.  Resonant visible light modulation with graphene , 2015, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[157]  K. V. Sreekanth,et al.  Graphene–Gold Metasurface Architectures for Ultrasensitive Plasmonic Biosensing , 2015, Advanced materials.

[158]  Piers Andrew,et al.  Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser , 2001 .

[159]  V. Kravets,et al.  Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. , 2013, Nature materials.

[160]  Vincenzo Giannini,et al.  Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas , 2009 .

[161]  G. Weick,et al.  Dirac-like plasmons in honeycomb lattices of metallic nanoparticles. , 2012, Physical review letters.

[162]  Bumsu Lee,et al.  Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Array. , 2015, Nano letters.

[163]  P. Thomas,et al.  Hybrid graphene plasmonic waveguide modulators , 2015, Nature Communications.

[164]  Efe Ilker,et al.  Extreme sensitivity biosensing platform based on hyperbolic metamaterials. , 2016, Nature materials.

[165]  V. Kravets,et al.  Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator. , 2015, Nano letters.

[166]  S. Kawata,et al.  Plasmonics for near-field nano-imaging and superlensing , 2009 .

[167]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[168]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[169]  Howard DeVoe,et al.  Optical Properties of Molecular Aggregates. II. Classical Theory of the Refraction, Absorption, and Optical Activity of Solutions and Crystals , 1965 .

[170]  R. Guo,et al.  Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays , 2016, 1611.04352.

[171]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[172]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[173]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[174]  R. H. Ritchie,et al.  Surface-Plasmon Resonance Effect in Grating Diffraction , 1968 .

[175]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[176]  Vadim A. Markel Coupled-dipole Approach to Scattering of Light from a One-dimensional Periodic Dipole Structure , 1993 .

[177]  Zhiyong Tang,et al.  Circular Dichroism Studies on Plasmonic Nanostructures. , 2017, Small.

[178]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[179]  Liang Dong,et al.  Electrically Tunable Quasi-3-D Mushroom Plasmonic Crystal , 2016, Journal of Lightwave Technology.

[180]  Jasper Knoester,et al.  Optical properties of molecular aggregates , 2002 .

[181]  Anatoly V Zayats,et al.  Data storage: The third plasmonic revolution. , 2010, Nature nanotechnology.

[182]  Francesco De Angelis,et al.  Hybridization in Three Dimensions: A Novel Route toward Plasmonic Metamolecules , 2015, Nano letters.

[183]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[184]  Jacob B. Khurgin,et al.  Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium , 2012 .

[185]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[186]  H. Giessen,et al.  Optical properties of two-dimensional quasicrystalline plasmonic arrays , 2011 .

[187]  A. Berrier,et al.  Collective resonances in plasmonic crystals: Size matters , 2012, 1305.3134.

[188]  William L. Barnes,et al.  Excitonic surface lattice resonances , 2016 .

[189]  A. Koenderink,et al.  Statistics of Randomized Plasmonic Lattice Lasers , 2015 .

[190]  Bit Optical Waves in Crystals Propagation and Control of Laser Radiation , 2022 .

[191]  Jaime Gómez Rivas,et al.  Universal scaling of the figure of merit of plasmonic sensors. , 2011, ACS nano.

[192]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[193]  Sergiy Patskovsky,et al.  Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. , 2009, Optics express.

[194]  A. Moilanen,et al.  Lasing in dark and bright modes of a finite-sized plasmonic lattice , 2016, Nature Communications.

[195]  H. Misawa,et al.  Surface plasmon-enhanced photochemical reactions , 2013 .

[196]  J. McGilp,et al.  Probing the out-of-plane optical response of plasmonic nanostructures using spectroscopic ellipsometry , 2011 .

[197]  P. Van Dorpe,et al.  Improvement of Figure of Merit for Gold Nanobar Array Plasmonic Sensors , 2011 .

[198]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[199]  Fei Dou,et al.  A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions , 2011 .

[200]  T. Odom,et al.  Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near‐Infrared Wavelengths in a Plasmonic Library , 2010 .

[201]  Q. Gong,et al.  Large spectral tunability of narrow geometric resonances of periodic arrays of metallic nanoparticles in a nematic liquid crystal , 2011 .

[202]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[203]  H. Giessen,et al.  2D quasiperiodic plasmonic crystals , 2012, Scientific Reports.

[204]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[205]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[206]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[207]  Igor Aharonovich,et al.  Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays. , 2017, Nano letters.

[208]  Yongmin Liu,et al.  Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications , 2016, Nanotechnology.

[209]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[210]  J. Gómez Rivas,et al.  Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. , 2009, Physical review letters.

[211]  Carsten Rockstuhl,et al.  The impact of nearest neighbor interaction on the resonances in terahertz metamaterials , 2009 .

[212]  Feng Wang,et al.  General properties of local plasmons in metal nanostructures. , 2006, Physical review letters.

[213]  T. Davis,et al.  Waveguide‐Plasmon Polariton Enhanced Photochemistry , 2015 .

[214]  Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles. , 2014, Physical review letters.

[215]  Zhaowei Liu,et al.  Optical Negative Refraction in Bulk Metamaterials of Nanowires , 2008, Science.

[216]  S. Linic,et al.  Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis , 2016, Nature Communications.

[217]  Y. Tong,et al.  Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. , 2013, Nano letters.

[218]  Jinghua Teng,et al.  Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. , 2013, Nanoscale.

[219]  George C Schatz,et al.  Real-time tunable lasing from plasmonic nanocavity arrays , 2015, Nature Communications.

[220]  George C Schatz,et al.  Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. , 2004, The Journal of chemical physics.

[221]  Katsuhisa Tanaka,et al.  Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array , 2017 .

[222]  S. M. Sadeghi,et al.  Tunable plasmonic-lattice mode sensors with ultrahigh sensitivities and figure-of-merits , 2016 .

[223]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[224]  Lechner,et al.  Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance , 2000, Physical review letters.

[225]  V. Kravets,et al.  Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix , 2010 .

[226]  William L. Barnes,et al.  Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays , 2009 .

[227]  M. Meier,et al.  Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering , 1986 .

[228]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[229]  R. Boyd,et al.  Strong, spectrally-tunable chirality in diffractive metasurfaces , 2015, Scientific Reports.

[230]  S. van Dijken,et al.  Ultrasensitive and label-free molecular level detection enabled by light phase control in magnetoplasmonic nanoantennas , 2015, Nature Communications.

[231]  W. Barnes,et al.  Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate , 2010, 1007.4428.

[232]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[233]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[234]  Wei Zhou,et al.  Plasmonic bowtie nanolaser arrays. , 2012, Nano letters.

[235]  Junqiao Wang,et al.  Low-threshold resonance amplification of out-of-plane lattice plasmons in active plasmonic nanoparticle arrays , 2014 .

[236]  V. Kravets,et al.  Retinal light trapping in textured photovoltaic cells , 2010 .

[237]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[238]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[239]  A. Koenderink,et al.  Lasing in quasi-periodic and aperiodic plasmon lattices , 2016 .

[240]  J. Aizpurua,et al.  Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity. , 2016, Nano letters.

[241]  V. Kravets,et al.  Narrow Collective Plasmon Resonances in Nanostructure Arrays Observed at Normal Light Incidence for Simplified Sensing in Asymmetric Air and Water Environments , 2014 .

[242]  Johannes Srajer,et al.  Double-layered nanoparticle stacks for spectro-electrochemical applications. , 2012, Optics letters.

[243]  M. Cryan,et al.  Fluorescent emission enhancement by aluminium nanoantenna arrays in the near UV , 2016 .

[244]  Kenjiro Miyano,et al.  Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation , 2003 .

[245]  A. Grigorenko,et al.  Fine structure constant and quantized optical transparency of plasmonic nanoarrays , 2012, Nature Communications.

[246]  Koray Aydin,et al.  Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals. , 2015, ACS nano.

[247]  Wei Zhou,et al.  Programmable soft lithography: solvent-assisted nanoscale embossing. , 2011, Nano letters.

[248]  Vadim A. Markel,et al.  Surface plasmons in ordered and disordered chains of metal nanospheres , 2006, 2007 Quantum Electronics and Laser Science Conference.

[249]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[250]  E. Schonbrun,et al.  Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays , 2008 .

[251]  Teri W. Odom,et al.  Delocalized Lattice Plasmon Resonances Show Dispersive Quality Factors. , 2012, The journal of physical chemistry letters.

[252]  A. Grigorenko,et al.  Optomagnetic composite medium with conducting nanoelements , 2002, cond-mat/0205331.

[253]  Ho-Pui Ho,et al.  Phase‐sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications , 2012 .

[254]  David L. Kaplan,et al.  Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays , 2009, Proceedings of the National Academy of Sciences.

[255]  Erik Jan Geluk,et al.  Surface plasmon lasing observed in metal hole arrays. , 2013, Physical review letters.

[256]  P. J. van Veldhoven,et al.  Surface plasmon dispersion in metal hole array lasers. , 2013, Optics express.

[257]  W. Barnes,et al.  Plasmonic surface lattice resonances in arrays of metallic nanoparticle dimers , 2016 .

[258]  A. Femius Koenderink,et al.  Lasing at the band edges of plasmonic lattices , 2014, 1409.7293.

[259]  J. Parsons,et al.  Nanoparticles and nanocomposites for display applications , 2009 .

[260]  L. A. Perez,et al.  Plasmonic interactions: from molecular plasmonics and Fano resonances to ferroplasmons. , 2014, ACS nano.

[261]  Vadim A. Markel LETTER TO THE EDITOR: Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres , 2005 .

[262]  G. Pirruccio,et al.  Coherent control of the optical absorption in a plasmonic lattice coupled to a luminescent layer , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[263]  V. Shalaev Optical negative-index metamaterials , 2007 .

[264]  A. Roberts,et al.  Plasmonic Edge States: An Electrostatic Eigenmode Description , 2017, 1705.10428.

[265]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[266]  Vasyl G. Kravets,et al.  Plasmonic blackbody : Almost complete absorption of light in nanostructured metallic coatings , 2008 .

[267]  G. Lozano,et al.  Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices. , 2014, Nanoscale.

[268]  V. Kravets,et al.  Nanoparticle arrays: from magnetic response to coupled plasmon resonances , 2014 .

[269]  G. Schatz,et al.  The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances , 1981 .

[270]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[271]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[272]  A. Lemaître,et al.  Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor , 2009 .

[273]  R. Guo,et al.  Controlling quantum dot emission by plasmonic nanoarrays. , 2015, Optics express.

[274]  Jordan A. Katine,et al.  Magnetic recording at 1.5 Pb m −2 using an integrated plasmonic antenna , 2010 .

[275]  Carsten Rockstuhl,et al.  Towards the origin of the nonlinear response in hybrid plasmonic systems. , 2011, Physical review letters.

[276]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[277]  V. Kravets,et al.  Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications. , 2017, Biosensors & bioelectronics.

[278]  Howard DeVoe,et al.  Optical Properties of Molecular Aggregates. I. Classical Model of Electronic Absorption and Refraction , 1964 .

[279]  B. Liedberg,et al.  Biosensing with surface plasmon resonance--how it all started. , 1995, Biosensors & bioelectronics.

[280]  Shuang Zhang,et al.  Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems , 2009 .

[281]  Jing Zhang,et al.  Hybrid waveguide-plasmon resonances in gold pillar arrays on top of a dielectric waveguide. , 2010, Optics letters.

[282]  George C Schatz,et al.  Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. , 2005, Nano letters.

[283]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[284]  Tal Ellenbogen,et al.  Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays. , 2017, Physical review letters.

[285]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[286]  P. Wei,et al.  Enhancing the Surface Sensitivity of Metallic Nanostructures Using Oblique-Angle-Induced Fano Resonances , 2016, Scientific Reports.

[287]  A. Grigorenko Negative refractive index in artificial metamaterials. , 2006, Optics letters.

[288]  A. Lagendijk Fundamental optical physics: Uncovering superabsorption , 2011 .

[289]  Yuebing Zheng,et al.  Optimizing plasmonic nanoantennas via coordinated multiple coupling , 2015, Scientific Reports.

[290]  Maximum modulation of plasmon-guided modes by graphene gating. , 2016, Optics express.

[291]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[292]  Alexander Moroz,et al.  Depolarization field of spheroidal particles , 2009 .

[293]  Thomas A. Klar,et al.  A Low Threshold Polymer Laser Based on Metallic Nanoparticle Gratings , 2003 .