Equilibres de Nash dans les jeux concurrents : application aux jeux temporisés. (Nash equilibria in concurrent games : application to timed games)

Ces travaux portent sur l'etude des jeux concurrents et temporises. Ces deux types de jeux sont des modeles tres utilises en synthese de controleur. Dans des situations ou plusieurs agents interagissent, les notions de strategies gagnantes utilises jusqu'ici ne suffisent plus et il est necessaires de s'inspirer de notions issus de la theorie des jeux. Le principal concept etudie dans ce domaine est celui d'equilibre de Nash. Nous proposons une transformation qui permet de calculer les equilibres dans les jeux concurrents en se ramenant a un calcul de strategies gagnantes. Beaucoup de travaux ont deja porte sur les calculs des strategies gagnantes, et nous pouvons tirer parti des algorithmes a notre disposition. Pour le calcul des equilibres dans les jeux temporises, nous montrons qu'il est possible de se ramener au cas des jeux concurrents. Nous proposons des algorithmes pour le calcul des equilibres, d'abord avec des objectifs classiques, puis nous proposons un cadre plus general qui permet de decrire des preferences plus quantitatives. Nous etudions egalement la complexite theorique des problemes de decisions associes. Enfin, nous presentons un outil implementant l'un des algorithmes que nous avons developpe.

[1]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[2]  Julien Signoles,et al.  Designing a Generic Graph Library Using ML Functors , 2007, Trends in Functional Programming.

[3]  Dexter Kozen,et al.  Lower bounds for natural proof systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[4]  P. Ramadge,et al.  Supervisory control of a class of discrete event processes , 1987 .

[5]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[6]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[7]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[8]  Michael Ummels,et al.  The Complexity of Nash Equilibria in Infinite Multiplayer Games , 2008, FoSSaCS.

[9]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[10]  N. Vieille,et al.  Stochastic Games with Imperfect Monitoring , 2006 .

[11]  Paul W. Goldberg,et al.  The Complexity of Computing a Nash Equilibrium , 2009, SIAM J. Comput..

[12]  Thomas A. Henzinger,et al.  Discrete-Time Control for Rectangular Hybrid Automata , 1997, Theor. Comput. Sci..

[13]  Nicolas Markey,et al.  On the Expressiveness and Complexity of ATL , 2007, FoSSaCS.

[14]  Cem U. Saraydar,et al.  Pareto efficiency of pricing-based power control in wireless data networks , 1999, WCNC. 1999 IEEE Wireless Communications and Networking Conference (Cat. No.99TH8466).

[15]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[16]  Dominik Wojtczak,et al.  The Complexity of Nash Equilibria in Simple Stochastic Multiplayer Games , 2009, ICALP.

[17]  Stephen B. Wicker,et al.  Stability of multipacket slotted Aloha with selfish users and perfect information , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[18]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 1999 .

[19]  Deepak D'Souza,et al.  Timed Control with Partial Observability , 2003, CAV.

[20]  Claire David,et al.  How do we remember the past in randomised strategies? , 2010, GANDALF.

[21]  Michael Ummels,et al.  Stochastic multiplayer games: theory and algorithms , 2010 .

[22]  Georg Gottlob NP trees and Carnap's modal logic , 1995, JACM.

[23]  A. Cournot Researches into the Mathematical Principles of the Theory of Wealth , 1898, Forerunners of Realizable Values Accounting in Financial Reporting.

[24]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[25]  Patricia Bouyer,et al.  Concurrent Games with Ordered Objectives , 2012, FoSSaCS.

[26]  Patricia Bouyer,et al.  Nash Equilibria in Concurrent Games with Büchi Objectives , 2011, FSTTCS.

[27]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Krishnendu Chatterjee,et al.  Generalized Mean-payoff and Energy Games , 2010, FSTTCS.

[29]  Sergio Yovine,et al.  KRONOS: a verification tool for real-time systems , 1997, International Journal on Software Tools for Technology Transfer.

[30]  Stephen B. Wicker,et al.  Game theory and the design of self-configuring, adaptive wireless networks , 2001, IEEE Commun. Mag..

[31]  Florian Horn Streett Games on Finite Graphs , 2005 .

[32]  Kim G. Larsen,et al.  UPPAAL-Tiga: Time for Playing Games! , 2007, CAV.

[33]  Stephen B. Wicker,et al.  Game theory in communications: motivation, explanation, and application to power control , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[34]  Véronique Bruyère,et al.  Equilibria in Quantitative Reachability Games , 2010, CSR.

[35]  Fausto Giunchiglia,et al.  NUSMV: A New Symbolic Model Verifier , 1999, CAV.

[36]  Patricia Bouyer,et al.  Nash Equilibria for Reachability Objectives in Multi-player Timed Games , 2010, CONCUR.

[37]  Kim G. Larsen,et al.  Nash Equilibria in Concurrent Priced Games , 2012, LATA.

[38]  E. Allen Emerson,et al.  The Complexity of Tree Automata and Logics of Programs , 1999, SIAM J. Comput..

[39]  Wang Yi,et al.  UPPAAL - a Tool Suite for Automatic Verification of Real-Time Systems , 1996, Hybrid Systems.

[40]  Wolfgang Thomas,et al.  Symbolic Synthesis of Finite-State Controllers for Request-Response Specifications , 2003, CIAA.

[41]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[42]  Thomas Wilke,et al.  Automata Logics, and Infinite Games , 2002, Lecture Notes in Computer Science.

[43]  Thomas A. Henzinger,et al.  Symbolic Algorithms for Infinite-State Games , 2001, CONCUR.

[44]  A Tarlecki,et al.  On Nash equilibria in stochastic games , 2004 .

[45]  Marcin Jurdziński,et al.  Deciding the Winner in Parity Games is in UP \cap co-Up , 1998, Inf. Process. Lett..

[46]  Edmund M. Clarke,et al.  Sequential circuit verification using symbolic model checking , 1991, DAC '90.

[47]  Gerard J. Holzmann,et al.  Design and Validation of Protocols: A Tutorial , 1993, Comput. Networks ISDN Syst..

[48]  Thomas A. Henzinger,et al.  The Element of Surprise in Timed Games , 2003, CONCUR.

[49]  Paul Hunter,et al.  Complexity Bounds for Muller Games , 2011 .

[50]  Dominik Wojtczak,et al.  The Complexity of Nash Equilibria in Limit-Average Games , 2011, CONCUR.

[51]  Krishnendu Chatterjee,et al.  Generalized Parity Games , 2007, FoSSaCS.