The Euler scheme for Lévy driven stochastic differential equations

In relation with Monte-Carlo methods to solve some integro-differential equations, we study the approximation problem of $\ee g(X_T)$ by $\ee g(\bar X_T^n)$, where $(X_t,0\leq t\leq T)$ is the solution of a stochastic differential equation governed by a Levy process $(Z_t)$, $(\bar X^n_t)$ is defined by the Euler discretization scheme with step $\fracTn$. With appropriate assumptions we show that the error $\ee g(X_T)-\ee g(\bar X_T^n)$ can be expanded in powers of $\frac1n$ if the Levy measure of $Z$ has finite moments of order high enough. Otherwise the rate of convergence is slower and its speed depends on the behavior of the tails of the Levy measure. The simulation of the increments of $(Z_t)$ is also discussed.

[1]  N. Bouleau,et al.  Numerical methods for stochastic processes , 1993 .

[2]  Denis Talay,et al.  Simulation of stochastic differential systems , 1995 .

[3]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[4]  M. Kanter,et al.  STABLE DENSITIES UNDER CHANGE OF SCALE AND TOTAL VARIATION INEQUALITIES , 1975 .

[5]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[6]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[7]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[8]  Robert A. Jarrow,et al.  OPTION PRICING USING THE TERM STRUCTURE OF INTEREST RATES TO HEDGE SYSTEMATIC DISCONTINUITIES IN ASSET RETURNS1 , 1995 .

[9]  E. Çinlar,et al.  On dams with additive inputs and a general release rule , 1972, Journal of Applied Probability.

[10]  D. Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996 .

[11]  Erhan Çinlar,et al.  Representation of Semimartingale Markov Processes in Terms of Wiener Processes and Poisson Random Measures , 1981 .

[12]  Erhan Çinlar,et al.  A stochastic integral in storage theory , 1971 .

[13]  B. Stuck,et al.  A statistical analysis of telephone noise , 1974 .

[14]  R. Jarrow,et al.  Jump Risks and the Intertemporal Capital Asset Pricing Model , 1984 .

[15]  Erhan Cinlar A Local Time for a Storage Process. , 1975 .

[16]  Fw Fred Steutel,et al.  Infinite divisibility in theory and practice , 1979 .

[17]  D. Burkholder Distribution Function Inequalities for Martingales , 1973 .

[18]  F. Eugene FAMA, . The Behavior of Stock-Market Prices, Journal of Business, , . , 1965 .

[19]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[20]  李幼升,et al.  Ph , 1989 .

[21]  D. Talay Discrétisation d'une équation différentielle stochastique et calcul approché d'espérances de fonctionnelles de la solution , 1986 .

[22]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[23]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .

[24]  Charles M. Goldie,et al.  A class of infinitely divisible random variables , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  P. Protter Stochastic integration and differential equations , 1990 .

[26]  J. Jacod,et al.  Une remarque sur les equations differentielles stochastiques a solutions markoviennes , 1991 .

[27]  E. Çinlar On dams with continuous semi-Markovian inputs , 1971 .

[28]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[29]  K. Bichteler Stochastic integrators with stationary independent increments , 1981 .

[30]  P. Moran,et al.  A theory of dams with continuous input and a general release rule , 1969 .

[31]  J. Jacod,et al.  Calcul de Malliavin pour les diffusions avec sauts : existence d'une densité dans le cas unidimensionnel , 1983 .