Modeling the Influence of Selected Factors on Thermal Resistance of Semiconductor Devices

In this paper, the analytical description of the nonlinear thermal model of the semiconductor device considering the influence of the selected factors on its thermal resistance is proposed. The worked out nonlinear thermal model considers the influence of such factors as length of metal leads, solder area, dimensions of the heat-sink, ambient temperature, and dissipated power on the efficiency of heat transfer between the chip and the surrounding. The correctness of the worked out thermal model is verified experimentally for the selected types of semiconductor devices operating in different cooling conditions. In all the considered cases, the good agreement of the results of calculations and measurements is obtained.

[1]  Noel Y. A. Shammas,et al.  Thermoelectric cooling of microelectronic circuits and waste heat electrical power generation in a desktop personal computer , 2011 .

[2]  J. Zarebski,et al.  A Method of Measuring the Transient Thermal Impedance of Monolithic Bipolar Switched Regulators , 2007, IEEE Transactions on Components and Packaging Technologies.

[3]  E. Dallago,et al.  Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization. II. Practice and experiments , 1998 .

[4]  A. Castellazzi,et al.  Electrothermal simulation of multichip-modules with novel transient thermal model and time-dependent boundary conditions , 2006, IEEE Transactions on Power Electronics.

[5]  Janusz Zarębski,et al.  Badanie wpływu wybranych czynników na parametry cieplne tranzystorów mocy MOS , 2009 .

[6]  Petar Igic,et al.  Physically based compact device models for circuit modelling applications , 2001 .

[7]  David L. Blackburn,et al.  Thermal resistance measurements , 1990 .

[8]  Andras Poppe,et al.  Integration of a network solver and a field solver for the mixed level thermal simulation of MEMS problems , 2002, Symposium on Design, Test, Integration, and Packaging of MEMS/MOEMS.

[9]  Ming-C. Cheng,et al.  An effective thermal circuit model for electro-thermal simulation of SOI analog circuits , 2011 .

[10]  Thomas W. Kenny,et al.  Electroosmotic microchannel cooling system for microprocessors , 2002 .

[11]  Janusz Zarębski,et al.  Estymacja parametrów modelu termicznego elementów półprzewodnikowych , 2006 .

[12]  J. Zarebski,et al.  Paths of the heat flow from semiconductor devices to the surrounding , 2012, Proceedings of the 19th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2012.

[13]  Philippe Dupuy,et al.  Power module lifetime estimation from chip temperature direct measurement in an automotive traction inverter , 2001, Microelectron. Reliab..

[14]  Doris Schmitt-Landsiedel,et al.  Reliability analysis of power MOSFET's with the help of compact models and circuit simulation , 2002, Microelectron. Reliab..

[15]  B. Allard,et al.  Choosing a thermal model for electrothermal simulation of power semiconductor devices , 1998, PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196).

[16]  V. Székely,et al.  A new evaluation method of thermal transient measurement results , 1997 .

[17]  Bruno Allard,et al.  State of the art of high temperature power electronics , 2009 .

[18]  A. Castellazzi,et al.  Reliability analysis and modeling of power MOSFETs in the 42-V-PowerNet , 2006, IEEE Transactions on Power Electronics.

[19]  Janusz Zarebski,et al.  The Electrothermal Large-Signal Model of Power MOS Transistors for SPICE , 2010, IEEE Transactions on Power Electronics.

[20]  D. Kinzer,et al.  The semiconductor roadmap for power management in the new millennium , 2001, Proc. IEEE.

[21]  Dong Liu,et al.  On-Chip Thermal Management With Microchannel Heat Sinks and Integrated Micropumps , 2006, Proceedings of the IEEE.

[22]  Dr. Martin März,et al.  Thermal Modeling of Power-electronic Systems , 2000 .

[23]  Paolo Emilio Bagnoli,et al.  Thermal analysis of insulated metal substrates for automotive electronic assemblies , 1999 .

[24]  Wolfgang Fichtner,et al.  A Novel Thermomechanics -Based Lifetime Prediction Model for Cycle Fatigue Failure Mechanisms in Power Semiconductors , 2002, Microelectron. Reliab..

[25]  Janusz Zarebski,et al.  Spice-aided modelling of the UC3842 current mode PWM controller with selfheating taken into account , 2007, Microelectron. Reliab..

[26]  Ravi Prasher,et al.  Thermal Interface Materials: Historical Perspective, Status, and Future Directions , 2006, Proceedings of the IEEE.

[27]  Jacek Dabrowski,et al.  Nonlinear compact thermal model of SiC power semiconductor devices , 2010, Proceedings of the 17th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2010.

[28]  Kartikeya Mayaram,et al.  Self-heating effects in basic semiconductor structures , 1993 .

[29]  Janusz Zarębski,et al.  Wpływ wybranych czynników na parametry termiczne przyrządów półprzewodnikowych , 2005 .

[30]  David L. Blackburn,et al.  Semiconductor measurement technology: Thermal resistance measurements , 1990 .

[31]  Marta Rencz,et al.  Dynamic thermal multiport modeling of IC packages , 2001 .

[32]  Z. Lisik,et al.  Influence of the manufacturing technology on microchannel structure efficiency , 2011 .

[33]  Y. Joshi,et al.  Single-phase liquid cooled microchannel heat sink for electronic packages , 2005 .

[34]  K. Górecki,et al.  Nonlinear Compact Thermal Model of Power Semiconductor Devices , 2010, IEEE Transactions on Components and Packaging Technologies.

[35]  Vincenzo d'Alessandro,et al.  A critical review of thermal models for electro-thermal simulation , 2002 .