A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa.

[1]  F. Herberg,et al.  Cyclic nucleotides as affinity tools: phosphorothioate cAMP analogues address specific PKA subproteomes. , 2011, New biotechnology.

[2]  Mathias Müsken,et al.  The Pseudomonas aeruginosa Chemotaxis Methyltransferase CheR1 Impacts on Bacterial Surface Sampling , 2011, PloS one.

[3]  村上 圭史 細菌に見つかった新しい情報伝達物質"cyclic di-GMP" , 2011 .

[4]  Zasha Weinberg,et al.  An Allosteric Self-Splicing Ribozyme Triggered by a Bacterial Second Messenger , 2010, Science.

[5]  N. Luscombe,et al.  Comparative genomics of cyclic-di-GMP signalling in bacteria: post-translational regulation and catalytic activity , 2010, Nucleic acids research.

[6]  Jie-Oh Lee,et al.  Structure of PP4397 reveals the molecular basis for different c-di-GMP binding modes by Pilz domain proteins. , 2010, Journal of molecular biology.

[7]  H. Sondermann,et al.  Vibrio cholerae VpsT Regulates Matrix Production and Motility by Directly Sensing Cyclic di-GMP , 2010, Science.

[8]  U. Jenal,et al.  Structural and mechanistic determinants of c-di-GMP signalling , 2009, Nature Reviews Microbiology.

[9]  G. Superti-Furga,et al.  Target profiling of small molecules by chemical proteomics. , 2009, Nature chemical biology.

[10]  H. Sondermann,et al.  Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. , 2009, Structure.

[11]  G. Roberts,et al.  Cyclic di-GMP Allosterically Inhibits the CRP-Like Protein (Clp) of Xanthomonas axonopodis pv. citri , 2009, Journal of bacteriology.

[12]  Regine Hengge,et al.  Principles of c-di-GMP signalling in bacteria , 2009, Nature Reviews Microbiology.

[13]  F. Herberg,et al.  Chemical tools selectively target components of the PKA system , 2009, BMC chemical biology.

[14]  R. Breaker,et al.  Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP , 2008, Science.

[15]  C. Harwood,et al.  Identification of FleQ from Pseudomonas aeruginosa as a c‐di‐GMP‐responsive transcription factor , 2008, Molecular microbiology.

[16]  H. Sondermann,et al.  Phosphorylation-Independent Regulation of the Diguanylate Cyclase WspR , 2008, PLoS biology.

[17]  S. Handelman,et al.  The structural basis of cyclic diguanylate signal transduction by PilZ domains , 2007, The EMBO journal.

[18]  Yoshihiro Hayakawa,et al.  A cyclic-di-GMP receptor required for bacterial exopolysaccharide production , 2007, Molecular microbiology.

[19]  U. Jenal,et al.  Structure of BeF3- -modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. , 2007, Structure.

[20]  Vincent T. Lee,et al.  The second messenger bis‐(3′‐5′)‐cyclic‐GMP and its PilZ domain‐containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa , 2007, Molecular microbiology.

[21]  U. Jenal,et al.  Mechanisms of cyclic-di-GMP signaling in bacteria. , 2006, Annual review of genetics.

[22]  Markus Meuwly,et al.  Allosteric Control of Cyclic di-GMP Signaling* , 2006, Journal of Biological Chemistry.

[23]  B. Zimmermann,et al.  Biomolecular interaction analysis in functional proteomics , 2006, Journal of Neural Transmission.

[24]  Albert J R Heck,et al.  Analysis of the cGMP/cAMP interactome using a chemical proteomics approach in mammalian heart tissue validates sphingosine kinase type 1-interacting protein as a genuine and highly abundant AKAP. , 2006, Journal of proteome research.

[25]  J. M. Dow,et al.  Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Dorit Amikam,et al.  Cyclic di-GMP as a second messenger. , 2006, Current opinion in microbiology.

[27]  Daniel G. Lee,et al.  Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Tifrea,et al.  A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Matthias Christen,et al.  Identification and Characterization of a Cyclic di-GMP-specific Phosphodiesterase and Its Allosteric Control by GTP* , 2005, Journal of Biological Chemistry.

[30]  Andrew J. Schmidt,et al.  The Ubiquitous Protein Domain EAL Is a Cyclic Diguanylate-Specific Phosphodiesterase: Enzymatically Active and Inactive EAL Domains , 2005, Journal of bacteriology.

[31]  Shawn Lewenza,et al.  Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: a tool for identifying differentially regulated genes. , 2005, Genome research.

[32]  Mark Gomelsky,et al.  Cyclic Diguanylate Is a Ubiquitous Signaling Molecule in Bacteria: Insights into Biochemistry of the GGDEF Protein Domain , 2005, Journal of bacteriology.

[33]  Dean Cheng,et al.  Pseudomonas aeruginosa Genome Database and PseudoCAP: facilitating community-based, continually updated, genome annotation , 2004, Nucleic Acids Res..

[34]  B. Giese,et al.  Structural basis of activity and allosteric control of diguanylate cyclase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  U. Römling,et al.  GGDEF and EAL domains inversely regulate cyclic di‐GMP levels and transition from sessility to motility , 2004, Molecular microbiology.

[36]  B. Giese,et al.  Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. , 2004, Genes & development.

[37]  Y. Hayakawa,et al.  A facile synthesis of cyclic bis(3′→5′)diguanylic acid , 2003 .

[38]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[39]  Alexey I Nesvizhskii,et al.  Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. , 2002, Analytical chemistry.

[40]  Friedrich W. Herberg,et al.  Applications of biomolecular interaction analysis in drug development , 2002 .

[41]  Michael Y. Galperin,et al.  Novel domains of the prokaryotic two-component signal transduction systems. , 2001, FEMS microbiology letters.

[42]  Peter Ross,et al.  Three cdg Operons Control Cellular Turnover of Cyclic Di-GMP in Acetobacter xylinum: Genetic Organization and Occurrence of Conserved Domains in Isoenzymes , 1998, Journal of bacteriology.

[43]  B. Persson,et al.  Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins , 1991 .

[44]  D. Wessel,et al.  A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. , 1984, Analytical biochemistry.

[45]  D. Morrissette The second messenger. , 1968, JAMA.