A methodology for direct exploitation of available information in the online model-based redesign of experiments

Online model-based design of experiments techniques were proposed to exploit the progressive increase of the information resulting from the running experiment, but they currently exhibit some limitations: the redesign time points are chosen “a-priori” and the first design may be heavily affected by the initial parametric mismatch. In order to face such issues an information driven redesign optimisation (IDRO) strategy is here proposed: a robust approach is adopted and a new design criterion based on the maximisation of a target profile of dynamic information is introduced. The methodology allows determining when to redesign the experiment in an automatic way, thus guaranteeing that an acceptable increase in the information content has been achieved before proceeding with the intermediate estimation of the parameters and the subsequent redesign of the experiment. The effectiveness of the new experiment design technique is demonstrated through two simulated case studies.

[1]  Axel Munack,et al.  Design of Optimal Dynamical Experiments for Parameter Estimation , 1989, 1989 American Control Conference.

[2]  Günter Wozny,et al.  Experimental evaluation of an approach to online redesign of experiments for parameter determination , 2013 .

[3]  Raman K. Mehra,et al.  Optimal input signals for parameter estimation in dynamic systems--Survey and new results , 1974 .

[4]  Sandro Macchietto,et al.  Model-based design of experiments for parameter precision: State of the art , 2008 .

[5]  Luca Costantino Zullo Computer aided design of experiments : an engineering approach , 1991 .

[6]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[7]  R. Hovorka,et al.  Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. , 2004, Physiological measurement.

[8]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[9]  Ann E Rundell,et al.  Model‐based design of experiments for cellular processes , 2013, Wiley interdisciplinary reviews. Systems biology and medicine.

[10]  Massimiliano Barolo,et al.  Online model-based redesign of experiments with erratic models: A disturbance estimation approach , 2012, Comput. Chem. Eng..

[11]  Sandro Macchietto,et al.  Designing robust optimal dynamic experiments , 2002 .

[12]  Massimiliano Barolo,et al.  Online Model-Based Redesign of Experiments for Parameter Estimation in Dynamic Systems , 2009 .

[13]  Johannes P. Schlöder,et al.  Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes , 2004, Optim. Methods Softw..

[14]  Håkan Hjalmarsson,et al.  Identification of ARX systems with non-stationary inputs - asymptotic analysis with application to adaptive input design , 2009, Autom..

[15]  Sandro Macchietto,et al.  Statistical tools for optimal dynamic model building , 2000 .

[16]  Massimiliano Barolo,et al.  Towards on-line model-based design of experiments , 2008 .

[17]  Vinay Prasad,et al.  Multiscale Model and Informatics-Based Optimal Design of Experiments : Application to the Catalytic Decomposition of Ammonia on Ruthenium , 2008 .

[18]  B.W. Bequette,et al.  Model predictive control of blood glucose in type I diabetics using subcutaneous glucose measurements , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[19]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[20]  Federico Galvanin Optimal design of clinical tests for the identification of physiological models of type 1 diabetes mellitus in the presence of model uncertainty , 2009 .

[21]  Filip Logist,et al.  An economic objective for the optimal experiment design of nonlinear dynamic processes , 2015, Autom..

[22]  Massimiliano Barolo,et al.  Model-Based Design of Experiments in the Presence of Continuous Measurement Systems , 2011 .

[23]  J. D. Stigter,et al.  On adaptive optimal input design: A bioreactor case study , 2006 .

[24]  René Schenkendorf,et al.  Online model selection approach based on Unscented Kalman Filtering , 2013 .

[25]  Sandro Macchietto,et al.  The optimal design of dynamic experiments , 1989 .

[26]  Håkan Hjalmarsson,et al.  Identification for control: adaptive input design using convex optimization , 2001 .

[27]  Jan F. M. Van Impe,et al.  Optimal dynamic experiment design for estimation of microbial growth kinetics at sub-optimal temperatures: Modes of implementation , 2005, Simul. Model. Pract. Theory.