A Short Derivation of the Structure Theorem for Graphs with Excluded Topological Minors
暂无分享,去创建一个
[1] Reinhard Diestel,et al. Two Short Proofs Concerning Tree-Decompositions , 2002, Combinatorics, Probability and Computing.
[2] Reinhard Diestel,et al. Graph Theory , 1997 .
[3] C. Stewart‐Amidei. Profiles , 1995 .
[4] Dániel Marx,et al. Structure theorem and isomorphism test for graphs with excluded topological subgraphs , 2011, STOC '12.
[5] Paul D. Seymour,et al. Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.
[6] W. Mader,et al. kreuzungsfreiea,b-Wege in endlichen Graphen , 1974 .
[7] Reinhard Diestel,et al. Canonical tree-decompositions of finite graphs II. Essential parts , 2013, J. Comb. Theory, Ser. B.
[8] Jim Geelen,et al. A generalization of the Grid Theorem , 2016 .
[9] Neil Robertson,et al. Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.
[10] Reinhard Diestel,et al. Profiles of Separations: in Graphs, Matroids, and Beyond , 2011, Comb..
[11] Reinhard Diestel,et al. k-Blocks: A Connectivity Invariant for Graphs , 2013, SIAM J. Discret. Math..
[12] B. Mohar,et al. Graph Minors , 2009 .
[13] Paul D. Seymour,et al. Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.
[14] Robin Thomas,et al. Excluding subdivisions of bounded degree graphs , 2014, J. Comb. Theory, Ser. B.
[15] Reinhard Diestel,et al. Canonical tree-decompositions of finite graphs I. Existence and algorithms , 2013, J. Comb. Theory, Ser. B.
[16] Zdenek Dvorak. A stronger structure theorem for excluded topological minors , 2012, ArXiv.
[17] J. Pascal Gollin,et al. Canonical tree-decompositions of a graph that display its k-blocks , 2015, J. Comb. Theory, Ser. B.
[18] Wolfgang Mader. Über n-fach zusammenhängende Eckenmengen in Graphen , 1978, J. Comb. Theory, Ser. B.
[19] Robin Thomas,et al. A menger-like property of tree-width: The finite case , 1990, J. Comb. Theory, Ser. B.
[20] Daniel Weißauer,et al. On the Block Number of Graphs , 2017, SIAM J. Discret. Math..