Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm
暂无分享,去创建一个
Marco Cococcioni | Yaroslav D. Sergeyev | Massimo Pappalardo | Y. Sergeyev | M. Pappalardo | M. Cococcioni
[1] H. Isermann. Linear lexicographic optimization , 1982 .
[2] Yaroslav D. Sergeyev,et al. Methodology of Numerical Computations with Infinities and Infinitesimals , 2012, ArXiv.
[3] Marco Cococcioni,et al. Towards lexicographic multi-objective linear programming using grossone methodology , 2016 .
[4] Yaroslav D. Sergeyev,et al. On accuracy of mathematical languages used to deal with the Riemann zeta function and the Dirichlet eta function , 2011, 1203.4142.
[5] Louis D'Alotto. A classification of one-dimensional cellular automata using infinite computations , 2015, Appl. Math. Comput..
[6] Alfredo Garro,et al. Observability of Turing Machines: A Refinement of the Theory of Computation , 2010, Informatica.
[7] Yaroslav D. Sergeyev,et al. Computations with Grossone-Based Infinities , 2015, UCNC.
[8] Alfredo Garro,et al. Single-tape and multi-tape Turing machines through the lens of the Grossone methodology , 2013, The Journal of Supercomputing.
[9] Yaroslav D. Sergeyev,et al. Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge ☆ , 2009, 1203.3150.
[10] Massimo Veltri,et al. Usage of infinitesimals in the Menger's Sponge model of porosity , 2011, Appl. Math. Comput..
[11] Renato De Leone,et al. Nonlinear programming and Grossone: Quadratic Programing and the role of Constraint Qualifications , 2018, Appl. Math. Comput..
[12] A. Robinson. Non-standard analysis , 1966 .
[13] Yaroslav D. Sergeyev,et al. A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic , 2017, Math. Comput. Simul..
[14] Yaroslav D. Sergeyev,et al. A New Applied Approach for Executing Computations with Infinite and Infinitesimal Quantities , 2008, Informatica.
[15] Renato De Leone,et al. The use of grossone in Mathematical Programming and Operations Research , 2011, Appl. Math. Comput..
[16] Antanas Zilinskas,et al. On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions , 2011, Appl. Math. Comput..
[17] Davide Rizza. Supertasks and numeral systems , 2016 .
[18] Yaroslav D. Sergeyev,et al. Interpretation of percolation in terms of infinity computations , 2012, Appl. Math. Comput..
[19] Yaroslav D. Sergeyev,et al. Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers , 2007 .
[20] M. Zarepisheh,et al. A dual-based algorithm for solving lexicographic multiple objective programs , 2007, Eur. J. Oper. Res..
[21] Maurice Margenstern. Fibonacci words, hyperbolic tilings and grossone , 2015, Commun. Nonlinear Sci. Numer. Simul..
[22] D. I. Iudin,et al. Infinity computations in cellular automaton forest-fire model , 2015, Commun. Nonlinear Sci. Numer. Simul..
[23] Maurice Margenstern,et al. An application of Grossone to the study of a family of tilings of the hyperbolic plane , 2011, Appl. Math. Comput..
[24] Yaroslav D. Sergeyev,et al. Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems , 2017 .
[25] Gabriele Lolli,et al. Metamathematical investigations on the theory of Grossone , 2015, Appl. Math. Comput..
[26] Yaroslav D. Sergeyev,et al. Higher order numerical differentiation on the Infinity Computer , 2011, Optim. Lett..
[27] Louis D'Alotto,et al. Cellular automata using infinite computations , 2011, Appl. Math. Comput..
[28] Yaroslav D. Sergeyev,et al. Solving ordinary differential equations on the Infinity Computer by working with infinitesimals numerically , 2013, Appl. Math. Comput..
[29] Yaroslav D. Sergeyev,et al. Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains , 2009, 1203.4140.
[30] I. Stanimirović,et al. COMPENDIOUS LEXICOGRAPHIC METHOD FOR MULTI-OBJECTIVE OPTIMIZATION , 2012 .
[31] A. Soyster,et al. Preemptive and nonpreemptive multi-objective programming: Relationship and counterexamples , 1983 .
[32] Yaroslav D. Sergeyev,et al. Counting systems and the First Hilbert problem , 2010, 1203.4141.
[33] Yaroslav D. Sergeyev. Using Blinking Fractals for Mathematical Modeling of Processes of Growth in Biological Systems , 2011, Informatica.
[34] Anatoly A. Zhigljavsky,et al. Computing sums of conditionally convergent and divergent series using the concept of grossone , 2012, Appl. Math. Comput..
[35] Yaroslav D. Sergeyev,et al. The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area , 2015, Commun. Nonlinear Sci. Numer. Simul..
[36] Yaroslav D. Sergeyev,et al. The Olympic Medals Ranks, Lexicographic Ordering, and Numerical Infinities , 2015, 1509.04313.
[37] Marat S. Mukhametzhanov,et al. Numerical methods for solving ODEs on the infinity computer , 2016 .
[38] Yaroslav D. Sergeyev,et al. Numerical Methods for Solving Initial Value Problems on the Infinity Computer , 2016, Int. J. Unconv. Comput..
[39] Yaroslav D. Sergeyev,et al. Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer , 2013 .