PHAISTOS: A framework for Markov chain Monte Carlo simulation and inference of protein structure

We present a new software framework for Markov chain Monte Carlo sampling for simulation, prediction, and inference of protein structure. The software package contains implementations of recent advances in Monte Carlo methodology, such as efficient local updates and sampling from probabilistic models of local protein structure. These models form a probabilistic alternative to the widely used fragment and rotamer libraries. Combined with an easily extendible software architecture, this makes PHAISTOS well suited for Bayesian inference of protein structure from sequence and/or experimental data. Currently, two force‐fields are available within the framework: PROFASI and OPLS‐AA/L, the latter including the generalized Born surface area solvent model. A flexible command‐line and configuration‐file interface allows users quickly to set up simulations with the desired configuration. PHAISTOS is released under the GNU General Public License v3.0. Source code and documentation are freely available from http://phaistos.sourceforge.net. The software is implemented in C++ and has been tested on Linux and OSX platforms. © 2013 Wiley Periodicals, Inc.

[1]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[2]  Andreas Vitalis,et al.  Methods for Monte Carlo simulations of biomacromolecules. , 2009, Annual reports in computational chemistry.

[3]  Aaron R. Dinner,et al.  Monte Carlo simulations of biomolecules: The MC module in CHARMM , 2006, J. Comput. Chem..

[4]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[5]  P. Røgen,et al.  Automatic classification of protein structure by using Gauss integrals , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[7]  Michael Nilges,et al.  Replica-exchange Monte Carlo scheme for bayesian data analysis. , 2005, Physical review letters.

[8]  Jens Meiler,et al.  ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. , 2011, Methods in enzymology.

[9]  Michele Vendruscolo,et al.  Protein structure determination from NMR chemical shifts , 2007, Proceedings of the National Academy of Sciences.

[10]  Da-Wei Li,et al.  Formation and Growth of Oligomers: A Monte Carlo Study of an Amyloid Tau Fragment , 2008, PLoS Comput. Biol..

[11]  Y. Okamoto,et al.  Numerical comparisons of three recently proposed algorithms in the protein folding problem , 1997 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  W. C. Still,et al.  The GB/SA Continuum Model for Solvation. A Fast Analytical Method for the Calculation of Approximate Born Radii , 1997 .

[14]  A. Irbäck,et al.  An effective all-atom potential for proteins , 2009, PMC biophysics.

[15]  Sandro Bottaro,et al.  Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized , 2010, PloS one.

[16]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[17]  Anders Irbäck,et al.  PROFASI: A Monte Carlo simulation package for protein folding and aggregation , 2006, J. Comput. Chem..

[18]  Simon Olsson,et al.  Generative probabilistic models extend the scope of inferential structure determination. , 2011, Journal of magnetic resonance.

[19]  Colin A. Smith,et al.  Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. , 2008, Journal of molecular biology.

[20]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[21]  J. Ferkinghoff-Borg,et al.  Optimized Monte Carlo analysis for generalized ensembles , 2002 .

[22]  William L. Jorgensen,et al.  Monte Carlo backbone sampling for polypeptides with variable bond angles and dihedral angles using concerted rotations and a Gaussian bias , 2003 .

[23]  B. Roux,et al.  Implicit solvent models. , 1999, Biophysical chemistry.

[24]  Jean-Claude Latombe,et al.  Algorithm and Data Structures for Efficient Energy Maintenance during Monte Carlo Simulation of Proteins , 2004, J. Comput. Biol..

[25]  David Baker,et al.  Macromolecular modeling with rosetta. , 2008, Annual review of biochemistry.

[26]  Wouter Boomsma,et al.  Fast large-scale clustering of protein structures using Gauss integrals , 2012, Bioinform..

[27]  G. Favrin,et al.  Monte Carlo update for chain molecules: Biased Gaussian steps in torsional space , 2001, cond-mat/0103580.

[28]  Anders Krogh,et al.  Sampling Realistic Protein Conformations Using Local Structural Bias , 2006, PLoS Comput. Biol..

[29]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[30]  A. Irbäck,et al.  Spontaneous β‐barrel formation: An all‐atom Monte Carlo study of Aβ16–22 oligomerization , 2008 .

[31]  Jakob P Ulmschneider,et al.  Monte Carlo vs molecular dynamics for all-atom polypeptide folding simulations. , 2006, The journal of physical chemistry. B.

[32]  Jesper Ferkinghoff-Borg,et al.  A generative, probabilistic model of local protein structure , 2008, Proceedings of the National Academy of Sciences.

[33]  Wouter Boomsma,et al.  Subtle Monte Carlo Updates in Dense Molecular Systems. , 2012, Journal of chemical theory and computation.

[34]  Jesper Ferkinghoff-Borg,et al.  Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models , 2010, BMC Bioinformatics.

[35]  M. Betancourt,et al.  Efficient Monte Carlo trial moves for polypeptide simulations. , 2005, The Journal of chemical physics.

[36]  Hesselbo,et al.  Monte Carlo simulation and global optimization without parameters. , 1995, Physical review letters.

[37]  Roland L. Dunbrack,et al.  Bayesian statistical analysis of protein side‐chain rotamer preferences , 1997, Protein science : a publication of the Protein Society.

[38]  N. Go,et al.  Ring Closure and Local Conformational Deformations of Chain Molecules , 1970 .

[39]  Sandro Bottaro,et al.  An efficient null model for conformational fluctuations in proteins. , 2012, Structure.

[40]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[41]  Teresa Przytycka Significance of conformational biases in Monte Carlo simulations of protein folding: Lessons from Metropolis–Hastings approach , 2004, Proteins.

[42]  Wouter Boomsma,et al.  Beyond rotamers: a generative, probabilistic model of side chains in proteins , 2010, BMC Bioinformatics.

[43]  W. Marsden I and J , 2012 .

[44]  M. Jiménez,et al.  De novo design of a monomeric three‐stranded antiparallel β‐sheet , 2008, Protein science : a publication of the Protein Society.

[45]  Oliver F. Lange,et al.  Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings , 2011, Journal of the American Chemical Society.

[46]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[47]  Oliver F. Lange,et al.  Consistent blind protein structure generation from NMR chemical shift data , 2008, Proceedings of the National Academy of Sciences.