Problems and methods of self-consistent reconstruction of tokamak equilibrium profiles from magnetic and polarimetric measurements

Recent advances in experimental measurements of magneto-optic properties of tokamak plasmas and progress in formulation of numerical algorithms for the analysis of magnetic data have allowed the self-consistent determination of the current density in the JET tokamak, in Ohmic and additionally heated discharges. An investigation of the numerical response of a model with finite parameterization to the uncertainties of the available discrete data is carried out. The error propagation is analysed for various types of discharges, and results on the safety factor profile are presented.

[1]  David W. Swain,et al.  An efficient technique for magnetic analysis of non-circular, high-beta tokamak equilibria , 1982 .

[2]  H. Soltwisch,et al.  Experimental test of far-infrared polarimetry for Faraday rotation measurements on the TFR 600 Tokamak , 1981 .

[3]  Mario Bertero,et al.  Linear inverse problems with discrete data. I. General formulation and singular system analysis , 1985 .

[4]  L. L. Lao,et al.  Separation of β̄p and ℓi in tokamaks of non-circular cross-section , 1985 .

[5]  P. Mantica,et al.  Determination of equilibrium global parameters from external magnetic measurements in JET discharges with auxiliary heating , 1988 .

[6]  G. Tonetti,et al.  Measurement of the energy content of the JET tokamak plasma with a diamagnetic loop , 1986 .

[7]  J. L. Luxon,et al.  Magnetic analysis of non-circular cross-section tokamaks , 1982 .

[8]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[9]  West,et al.  Measurement of the rotational transform at the axis of a tokamak. , 1987, Physical review letters.

[10]  G. Tonetti,et al.  Tokamak equilibrium reconstruction using Faraday rotation measurements , 1988 .

[11]  R. J. Hastie,et al.  The Taylor relaxed state in tokamaks and the sawtooth collapse , 1989 .

[12]  H. Soltwisch Current distribution measurement in a tokamak by FIR polarimetry (invited) , 1986 .

[13]  P. Mantica,et al.  Experimental identification of Tokamak equilibrium using magnetic and diamagnetic signals , 1988 .

[14]  Huang,et al.  Determination of the poloidal magnetic field profiles in a tokamak by polarization spectroscopy of an impurity ion line. , 1988, Physical review letters.

[15]  L. Lao,et al.  Reconstruction of current profile parameters and plasma shapes in tokamaks , 1985 .

[16]  S. Segre,et al.  The polarization of an e.m. wave propagating in a plasma with magnetic shear. The measurement of poloidal magnetic field in a Tokamak , 1972 .

[17]  J. Blum Numerical simulation and optimal control in plasma physics , 1989 .

[18]  F. Crisanti,et al.  Analysis of MHD equilibria by toroidal multipolar expansions , 1986 .

[19]  M. Bertero,et al.  Linear inverse problems with discrete data: II. Stability and regularisation , 1988 .