Three-dimensional adaptive grid-embedding Euler technique

A new three-dimensional adaptive-grid Euler procedure is presented that automatically detects high-gradient regions in the flow and locally subdivides the computational grid in these regions to provide a uniform, high level of accuracy over the entire domain. A tunable, semistructured data system is utilized that provides global, topological unstructured-grid flexibility along with the efficiency of a local, structured-grid system. In addition, this data structure allows for the flow solution algorithm to be executed on a wide variety of parallel/vector computing platforms. An explicit, lime-marching, control volume procedure is used to integrate the Euler equations to steady state