The Strongish Planted Clique Hypothesis and Its Consequences

We formulate a new hardness assumption, the Strongish Planted Clique Hypothesis (SPCH), which postulates that any algorithm for planted clique must run in time $n^{\Omega(\log{n})}$ (so that the state-of-the-art running time of $n^{O(\log n)}$ is optimal up to a constant in the exponent). We provide two sets of applications of the new hypothesis. First, we show that SPCH implies (nearly) tight inapproximability results for the following well-studied problems in terms of the parameter $k$: Densest $k$-Subgraph, Smallest $k$-Edge Subgraph, Densest $k$-Subhypergraph, Steiner $k$-Forest, and Directed Steiner Network with $k$ terminal pairs. For example, we show, under SPCH, that no polynomial time algorithm achieves $o(k)$-approximation for Densest $k$-Subgraph. This inapproximability ratio improves upon the previous best $k^{o(1)}$ factor from (Chalermsook et al., FOCS 2017). Furthermore, our lower bounds hold even against fixed-parameter tractable algorithms with parameter $k$. Our second application focuses on the complexity of graph pattern detection. For both induced and non-induced graph pattern detection, we prove hardness results under SPCH, which improves the running time lower bounds obtained by (Dalirrooyfard et al., STOC 2019) under the Exponential Time Hypothesis.

[1]  Pasin Manurangsi,et al.  ETH-Hardness of Approximating 2-CSPs and Directed Steiner Network , 2018, ITCS.

[2]  Michael Dinitz,et al.  Everywhere-Sparse Spanners via Dense Subgraphs , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[3]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[4]  Andrea Lincoln,et al.  Algorithms and Lower Bounds for Cycles and Walks: Small Space and Sparse Graphs , 2020, ITCS.

[5]  Mohammad Taghi Hajiaghayi,et al.  The prize-collecting generalized steiner tree problem via a new approach of primal-dual schema , 2006, SODA '06.

[6]  U. Feige,et al.  On the Densest K-subgraph Problem , 1997 .

[7]  Moses Charikar,et al.  Greedy approximation algorithms for finding dense components in a graph , 2000, APPROX.

[8]  Jon M. Kleinberg,et al.  Subgraph frequencies: mapping the empirical and extremal geography of large graph collections , 2013, WWW.

[9]  Mark Braverman,et al.  Approximating the best Nash Equilibrium in no(log n)-time breaks the Exponential Time Hypothesis , 2015, Electron. Colloquium Comput. Complex..

[10]  Guy Bresler,et al.  Optimal Average-Case Reductions to Sparse PCA: From Weak Assumptions to Strong Hardness , 2019, COLT.

[11]  Anupam Gupta,et al.  Set connectivity problems in undirected graphs and the directed Steiner network problem , 2008, SODA '08.

[12]  Pasin Manurangsi,et al.  Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph , 2016, STOC.

[13]  Siddharth Barman,et al.  Approximating Nash Equilibria and Dense Subgraphs via an Approximate Version of Carathéodory's Theorem , 2014, SIAM J. Comput..

[14]  Markus Bläser,et al.  Graph Pattern Polynomials , 2018, FSTTCS.

[15]  Dániel Marx,et al.  Complexity of Counting Subgraphs: Only the Boundedness of the Vertex-Cover Number Counts , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[16]  Pasin Manurangsi,et al.  Approximating Dense Max 2-CSPs , 2015, APPROX-RANDOM.

[17]  Yakov Babichenko,et al.  Can Almost Everybody be Almost Happy? , 2015, ITCS.

[18]  Virginia Vassilevska Williams,et al.  Graph pattern detection: hardness for all induced patterns and faster non-induced cycles , 2019, STOC.

[19]  Pasin Manurangsi,et al.  Inapproximability of VC Dimension and Littlestone's Dimension , 2017, COLT.

[20]  Ryan Williams,et al.  Finding, minimizing, and counting weighted subgraphs , 2009, STOC '09.

[21]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[22]  Tselil Schramm,et al.  Statistical Query Algorithms and Low-Degree Tests Are Almost Equivalent , 2020, COLT.

[23]  Harrison H. Zhou,et al.  Sparse CCA: Adaptive Estimation and Computational Barriers , 2014, 1409.8565.

[24]  R. Ravi,et al.  Dial a Ride from k-forest , 2007, TALG.

[25]  Uriel Feige,et al.  Relations between average case complexity and approximation complexity , 2002, STOC '02.

[26]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[27]  Yu Cheng,et al.  Hardness Results for Signaling in Bayesian Zero-Sum and Network Routing Games , 2015, EC.

[28]  Luca Trevisan,et al.  From Gap-ETH to FPT-Inapproximability: Clique, Dominating Set, and More , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[29]  Mathias Bæk Tejs Knudsen,et al.  Finding even cycles faster via capped k-walks , 2017, STOC.

[30]  Michael Dinitz,et al.  Improved Approximation Algorithm for Steiner k-Forest with Nearly Uniform Weights , 2017, ACM Trans. Algorithms.

[31]  Bruce E. Hajek,et al.  Computational Lower Bounds for Community Detection on Random Graphs , 2014, COLT.

[32]  Pravesh Kothari,et al.  A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[33]  Carsten Lund,et al.  Efficient probabilistically checkable proofs and applications to approximations , 1993, STOC.

[34]  Rajiv Gandhi,et al.  Bicovering: Covering edges with two small subsets of vertices , 2016, Electron. Colloquium Comput. Complex..

[35]  Sudipto Guha,et al.  Approximation algorithms for directed Steiner problems , 1999, SODA '98.

[36]  Robert Krauthgamer,et al.  How hard is it to approximate the best Nash equilibrium? , 2009, SODA.

[37]  Uriel Feige,et al.  The Dense k -Subgraph Problem , 2001, Algorithmica.

[38]  Liming Cai,et al.  On the existence of subexponential parameterized algorithms , 2003, J. Comput. Syst. Sci..

[39]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[40]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[41]  Prasad Raghavendra,et al.  Graph expansion and the unique games conjecture , 2010, STOC '10.

[42]  Pasin Manurangsi,et al.  Parameterized Approximation Algorithms for Directed Steiner Network Problems , 2017, ESA.

[43]  Benny Applebaum,et al.  Pseudorandom generators with long stretch and low locality from random local one-way functions , 2012, STOC '12.

[44]  Pasin Manurangsi,et al.  Sherali-Adams Integrality Gaps Matching the Log-Density Threshold , 2018, APPROX-RANDOM.

[45]  Sanjeev Arora,et al.  Inapproximabilty of Densest κ-Subgraph from Average Case Hardness , 2011 .

[46]  Aditya Bhaskara,et al.  Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph , 2011, SODA.

[47]  Amit Daniely,et al.  Complexity theoretic limitations on learning halfspaces , 2015, STOC.

[48]  P. Erdös ASYMMETRIC GRAPHS , 2022 .

[49]  Guy Kortsarz,et al.  Improved approximating algorithms for Directed Steiner Forest , 2009, SODA.

[50]  Mark Braverman,et al.  Finding Endogenously Formed Communities , 2012, SODA.

[51]  Bingkai Lin,et al.  The Parameterized Complexity of k-Biclique , 2014, SODA.

[52]  Robert Krauthgamer,et al.  The Probable Value of the Lovász--Schrijver Relaxations for Maximum Independent Set , 2003, SIAM J. Comput..

[53]  Quentin Berthet,et al.  Statistical and computational trade-offs in estimation of sparse principal components , 2014, 1408.5369.

[54]  Santosh S. Vempala,et al.  Statistical Algorithms and a Lower Bound for Detecting Planted Cliques , 2012, J. ACM.

[55]  Piotr Berman,et al.  On the Complexity of Approximating the Independent Set Problem , 1989, Inf. Comput..

[56]  David Zuckerman,et al.  On Unapproximable Versions of NP-Complete Problems , 1996, SIAM J. Comput..

[57]  Michael Dinitz,et al.  Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds , 2017, SODA.

[58]  Michael Alekhnovich More on Average Case vs Approximation Complexity , 2011, computational complexity.

[59]  Sanjeev Arora,et al.  Computational Complexity and Information Asymmetry in Financial Products (Extended Abstract) , 2010, ICS.

[60]  V. V. Williams ON SOME FINE-GRAINED QUESTIONS IN ALGORITHMS AND COMPLEXITY , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).

[61]  Wasim Huleihel,et al.  Reducibility and Computational Lower Bounds for Problems with Planted Sparse Structure , 2018, COLT.

[62]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[63]  Michal Pilipczuk,et al.  Randomized Contractions Meet Lean Decompositions , 2018, ACM Trans. Algorithms.

[64]  Pasin Manurangsi,et al.  Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis , 2017, ICALP.

[65]  U. Feige,et al.  On the densest k-subgraph problems , 1997 .

[66]  Noga Alon,et al.  Finding and counting given length cycles , 1997, Algorithmica.

[67]  Philippe Rigollet,et al.  Complexity Theoretic Lower Bounds for Sparse Principal Component Detection , 2013, COLT.

[68]  Rolf Niedermeier,et al.  Parameterized Complexity of Arc-Weighted Directed Steiner Problems , 2009, SIAM J. Discret. Math..

[69]  Prasad Raghavendra,et al.  Lower Bounds on the Size of Semidefinite Programming Relaxations , 2014, STOC.

[70]  Mark Jerrum,et al.  Large Cliques Elude the Metropolis Process , 1992, Random Struct. Algorithms.

[71]  Aravindan Vijayaraghavan,et al.  Approximation Algorithms for Label Cover and The Log-Density Threshold , 2017, SODA.

[72]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[73]  Svatopluk Poljak,et al.  On the complexity of the subgraph problem , 1985 .

[74]  Guy Kindler,et al.  On the optimality of semidefinite relaxations for average-case and generalized constraint satisfaction , 2013, ITCS '13.

[75]  Piotr Berman,et al.  Approximation algorithms for spanner problems and Directed Steiner Forest , 2013, Inf. Comput..

[76]  Saket Saurabh,et al.  Parameterized Complexity and Approximability of Directed Odd Cycle Transversal , 2017, SODA.

[77]  Michal Pilipczuk,et al.  Known Algorithms for Edge Clique Cover are Probably Optimal , 2012, SIAM J. Comput..

[78]  Pasin Manurangsi,et al.  Parameterized Intractability of Even Set and Shortest Vector Problem from Gap-ETH , 2018, Electron. Colloquium Comput. Complex..

[79]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[80]  Amir Abboud,et al.  Reachability Preservers: New Extremal Bounds and Approximation Algorithms , 2017, SODA.

[81]  Sanjeev Khanna,et al.  Design networks with bounded pairwise distance , 1999, STOC '99.

[82]  Steven Roman,et al.  A Problem of Zarankiewicz , 1975, J. Comb. Theory, Ser. A.

[83]  Mohammad Taghi Hajiaghayi,et al.  Improved Approximation Algorithms for Label Cover Problems , 2011, Algorithmica.

[84]  Aditya Bhaskara,et al.  Detecting high log-densities: an O(n¼) approximation for densest k-subgraph , 2010, STOC '10.

[85]  Dániel Marx,et al.  Homomorphisms are a good basis for counting small subgraphs , 2017, STOC.

[86]  Michael Dinitz,et al.  The Densest k-Subhypergraph Problem , 2016, APPROX-RANDOM.

[87]  Subhash Khot,et al.  Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[88]  Aviad Rubinstein,et al.  Detecting communities is Hard (And Counting Them is Even Harder) , 2016, ITCS.

[89]  Andrzej Lingas,et al.  Counting and Detecting Small Subgraphs via Equations , 2013, SIAM J. Discret. Math..

[90]  Danny Segev,et al.  Approximate k-Steiner Forests via the Lagrangian Relaxation Technique with Internal Preprocessing , 2008, Algorithmica.

[91]  Siddharth Barman,et al.  Approximating Nash Equilibria and Dense Bipartite Subgraphs via an Approximate Version of Caratheodory's Theorem , 2015, STOC.

[92]  Dániel Marx,et al.  Lower bounds based on the Exponential Time Hypothesis , 2011, Bull. EATCS.

[93]  Amit Daniely,et al.  Complexity Theoretic Limitations on Learning DNF's , 2014, COLT.

[94]  Aviad Rubinstein,et al.  Settling the Complexity of Computing Approximate Two-Player Nash Equilibria , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[95]  Omri Weinstein,et al.  ETH Hardness for Densest-k-Subgraph with Perfect Completeness , 2015, SODA.

[96]  Raphael Yuster,et al.  Detecting short directed cycles using rectangular matrix multiplication and dynamic programming , 2004, SODA '04.

[97]  Michael Dinitz,et al.  Minimizing the Union: Tight Approximations for Small Set Bipartite Vertex Expansion , 2016, SODA.

[98]  Noga Alon,et al.  Derandomized graph products , 1995, computational complexity.

[99]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[100]  Guy Kortsarz,et al.  On Choosing a Dense Subgraph (Extended Abstract) , 1993, FOCS 1993.